在前面一篇教程中,我们通过取局部最大值的方法来处理检测结果,但是从图像中可以看到harris角的分布并不均匀,在纹理颜色比较深的地方检测的harris角结果更密集一些.本章中,我们使用一个简单的策略算法,首先在检测的harris角图像中,找到一个值最大的角,后面的最大值角检测至少要和前面的角有一个距离,这样循环查找角,直到得到指定数目的角位置. 在OpenCV中,我们可以通过下面的代码得到结果: // Compute good features to track std::…
代码示例一: #include<opencv2/opencv.hpp> using namespace cv; int main(){ Mat src = imread(); imshow("原始图", src); //进行Harris角点检测找出角点 Mat cornerStrength; cornerHarris(src, cornerStrength, , , 0.01); //对灰度图进行阈值操作,得到二值图并显示 Mat harrisCorner; thresho…