Remainders Game (中国剩余定理)】的更多相关文章

题目链接: D. Remainders Game time limit per test 1 second memory limit per test 256 megabytes input standard input output standard output Today Pari and Arya are playing a game called Remainders. Pari chooses two positive integer x and k, and tells Arya …
题意:已知k和一个集合C={c1,c2,c3....cn},问是否有满足集合C的中国剩余定理的解x,使x%k的值唯一确定. 数学知识: #include<iostream> #include<cstdio> using namespace std; #define LL long long LL gcd(LL a, LL b){ ? a : gcd(b, a%b); } int main(){ int n, m; cin >> n >> m; LL ans…
二进制枚举+容斥原理+中国剩余定理 #include<iostream> #include<cstring> #include<cstdio> #include<algorithm> #include<cmath> using namespace std; #define MAXN 20 typedef long long LL; int n; int s[MAXN]; LL a[MAXN], m[MAXN]; //a是余数,m是除数 LL ex…
我理解的中国剩余定理的含义是:给定一个数除以一系列互素的数${p_1}, \cdots ,{p_n}$的余数,那么这个数除以这组素数之积($N = {p_1} \times  \cdots  \times {p_n}$)的余数也确定了,反之亦然. 用表达式表示如下: \[\begin{array}{l}x \equiv {a_1}(\bmod {p_1})\\{\rm{     }} \vdots \\x \equiv {a_n}(\bmod {p_n})\end{array}\] 那么任何满足…
题目链接: http://www.51nod.com/onlineJudge/user.html#!userId=21687 题意: 中文题诶~ 思路: 本题就是个中国剩余定理模板题,不过模拟也可以过,而且时间复杂度嘛~ 我们可以知道gcd得出两个数的最大公约在最坏的情况下(a, b是相邻的两个斐波拉契数)是O(logn)的, 同理可以知道exgcd也是O(lgn)时间复杂度,因此中国剩余定理时间复杂度是O(nlogn); 而模拟的话最坏的情况下需要O(n*x)的时间~本题两种算法都是15ms.…
Unknown Treasure Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 2389    Accepted Submission(s): 885 Problem Description On the way to the next secret treasure hiding place, the mathematician…
/* 中国剩余定理可以描述为: 若某数x分别被d1..….dn除得的余数为r1.r2.….rn,则可表示为下式: x=R1r1+R2r2+…+Rnrn+RD 其中R1是d2.d3.….dn的公倍数,而且被d1除,余数为1:(称为R1相对于d1的数论倒数) R1 . R2 . … . Rn是d1.d2.….dn-1的公倍数,而且被dn除,余数为1: D是d1.d2.….的最小公倍数: R是任意整数(代表倍数),可根据实际需要决定: 且d1..….必须互质,以保证每个Ri(i=1,2,…,n)都能求…
Biorhythms Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 110991   Accepted: 34541 Description Some people believe that there are three cycles in a person's life that start the day he or she is born. These three cycles are the physical,…
题目链接: http://www.bnuoj.com/v3/problem_show.php?pid=20172 题目大意:有C个模方程,每个方程可能有k余数,求最小的S个解. 解题思路: 看见模方程就想到中国剩余定理,然后看下确定的方程情况. 由乘法原理,共有II ki 种情况,即求解II ki 次.k比较大时基本完蛋. 其实解模方程还有一种暴力方法,就是选定一个模方程,令t=0,1...., n=t*LCM+余数(n一定要大于0) 通过t不断增大这种迭代方式从小到大创造一些可能解n,然后去测…
一,题意:右上角中文.二,思路: 1,由题意得出方程组 2,利用中国剩余定理求解 3,求出最小正整数三,步骤: 1,由题意得出方程组 (n+d) % 23 = p ; (n+d) % 28 = e ; (n+d) % 33 = i ; 2,中国剩余定理求解 i,从23和28的公倍数中找出x,且满足x%33 = 1 ,x=1288 ii,从23和33的公倍数中找出y,且满足y%28 = 1 ,y=14421 iii,从28和33的公倍数中找出z,且满足z%23 = 1 ,z=5544 iiii,s…