BZOJ1367 BOI2004Sequence(左偏树)】的更多相关文章

首先考虑把bi和ai同时减i,问题变为非严格递增.显然如果a是一个递减序列,b序列所有数都取其中位数最优.于是划分原序列使得每一部分递减,然后考虑合并相邻两段.如果前一段的中位数<=后一段的中位数,显然各自b的取值不变就行了:否则将b的取值统一改为合并后序列的中位数.感性证明. 于是用左偏树维护中位数即可.具体操作时并不需要每次加一段,而是加一个就可以了,维护每段较小的⌈len/2⌉个数的大根堆,合并时如果两段的长度都为奇数就弹出一个,否则不变.因为只加一个,不会出现本应成为中位数的数被丢掉的情…
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1367 题意概括 Description Input Output 一个整数R 题解 http://blog.csdn.net/u011265346/article/details/46532421 我被自己坑死了. 左偏树合并: if (a==0||b==0) return a+b; 这样是对的. 然而: if (a*b==0) return a+b; 这样是错的. 原因是:a*b会爆int………
题目链接 BZOJ1367 题解 又是一道神题,, 我们考虑一些简单的情况: 我们先假设\(b_i\)单调不降,而不是递增 对于递增序列\(\{a_i\}\),显然答案\(\{b_i\}\)满足\(b_i = a_i\) 对于递减序列\(\{a_i\}\),显然答案\(\{b_i\}\)满足\(b_i\)为\(a_i\)的中位数 于是我们有了初步的想法: 将\(a_i\)分成若干个单调递减的段,每段的答案为其中位数 然后顺次访问段 如果两段的答案是递增的,显然这两段就没有影响,相互独立了,就保留…
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=1367 题解 先考虑条件为要求不下降序列(不是递增)的情况. 那么考虑一段数值相同的子段,这一段相同的数值显然应该是原序列 \(t\) 中对应的位置上的数的中位数. (不是中位数答案一定比中位数大) 所以问题转化为划分成很多段,每一段的权值是中位数,要求权值不下降. 对于一段,每一次往前扫,只要前面的中位数比它大,那么就合并. 可以用可并堆维护每一段,只保留中位数以下的数.合并左偏树实现即可.…
左偏树 炒鸡棒的论文<左偏树的特点及其应用> 虽然题目要求比论文多了一个条件,但是……只需要求非递减就可以AC……数据好弱…… 虽然还没想明白为什么,但是应该觉得应该是这样——求非递减用大顶堆,非递增小顶堆…… 这题和bzoj1367题意差不多,但是那题求的是严格递增.(bzoj找不到那道题,可能是VIP或什么原因? 严格递增的方法就是每一个数字a[i]都要减去i,这样求得的b[i]也要再加i,保证了严格递增(为什么对我就不知道了 代码比较水,因为题目数据的问题,我的代码也就钻了空子,反正ac…
[题目分析] 左偏树的模板题目,大概就是尽量维护树的深度保持平衡,以及尽可能的快速合并的一种堆. 感觉和启发式合并基本相同. 其实并没有快很多. 本人的左偏树代码自带大常数,借鉴请慎重 [代码] #include <cstdio> #include <cstring> #include <cstdlib> #include <cmath> #include <set> #include <map> #include <strin…
1455: 罗马游戏 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1355  Solved: 561[Submit][Status][Discuss] Description 罗马皇帝很喜欢玩杀人游戏. 他的军队里面有n个人,每个人都是一个独立的团.最近举行了一次平面几何测试,每个人都得到了一个分数. 皇帝很喜欢平面几何,他对那些得分很低的人嗤之以鼻.他决定玩这样一个游戏. 它可以发两种命令: 1. Merger(i, j).把i所在的团和j所在的…
2016-05-31  15:56:57 题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2809 直观的思想是当领导力确定时,尽量选择薪水少的---->枚举领导力 树上每个节点维护一个大根堆,先将所有儿子并起来,若超过预算,再弹出根直到满足预算. 左偏树的合并操作是logn的,遍历一遍树,时间复杂度O(nlogn) #include<bits/stdc++.h> #define inf 1000000000 #define ll l…
原题链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1389 大致题意:N只相互不认识的猴子(每只猴子有一个战斗力值) 两只不认识的猴子之间发生冲突,两只猴子会分别请出它们认识的最强壮的 猴子进行决斗.决斗之后这,两群猴子都相互认识了. 决斗的那两只猴子战斗力减半...有m组询问 输入a b表示猴子a和b发生了冲突,若a,b属于同一个集合输出-1 否则输出决斗之后这群猴子(已合并)中最强的战斗力值... 具体思路:用并查…
我觉得我要改一下签名了……怎么会有窝这么啰嗦的人呢? 做这题需要先学习左偏树<左偏树的特点及其应用> 然后做一下POJ3666,这题的简单版. 思路: 考虑一下维护中位数的过程原数组为A,找到的不降数列为B当对于A的前n个数已经找好了最优解B[1…n],可知此时A被分成很多块,并被一些大顶堆记录,假设第i块有num个数,那么第i个堆维护这一块的最小的(num+1)/2个数,堆顶即为中位数.假设已经处理好前7个数,被分为两块 ([a,b],c,d) ([h,e],f) (每一块按升序排列,[]中…