关于min_25筛的一些理解】的更多相关文章

关于min_25筛的一些理解 如果想看如何筛个普通积性函数啥的,就别往下看了,下面没有的(QwQ). 下文中,所有的\(p\)都代表质数,\(P\)代表质数集合. 注意下文中定义的最小/最大质因子都是默认所有质因子本质不同. 即\(2*2*3*4*5*5\)的最小/次小质因子都是\(2\),最大/次大质因子都是\(5\). step1. 适用条件与思想 min_25筛用于求积性函数前缀和,即\(\sum_{i=1}^n f(i)\) . min_25筛相比于传统筛法来说(如莫比乌斯反演.杜教筛)…
终于知道发明者的正确的名字了,是Min_25,这个筛法速度为亚线性的\(O(\frac{n^{\frac{3}{4}}}{\log x})\),用于求解具有下面性质的积性函数的前缀和: 在 \(p\) 处是简单的低次多项式 在 \(p^c\) 处可以快速求值 貌似积性函数是指取一个积性函数 \(f(x)\) ,其在质数的位置上取值与所求函数相同.所以可以用来求n以内的质数的个数(取常函数 \(f(x)=1\) )以及质数的和(取恒等函数 \(f(x)=x\) ). 参考资料: loj#6235.…
min_25筛 用来干啥? 考虑一个积性函数\(F(x)\),用来快速计算前缀和\[\sum_{i=1}^nF(i)\] 当然,这个积性函数要满足\(F(x),x\in Prime\)可以用多项式表示 同时,\(F(x^k),x\in Prime\)要能够快速计算答案 需要预处理的东西 先不考虑求前缀和的问题,考虑一个积性函数\(F(x)\) 求解\[\sum_{i=1}^n[i\in Prime]F(i)\] 直接求我也会懵逼的,还是找一个函数来算算,假设\(F(x)=x^k\) 那么,求解\…
Min_25 筛这个东西,完全理解花了我很长的时间,所以写点东西来记录一些自己的理解. 它能做什么 对于某个数论函数 \(f\),如果满足以下几个条件,那么它就可以用 Min_25 筛来快速求出这个函数的前缀和. 它是一个积性函数 对于一个质数 \(p\) ,\(f(p)\) 的表达式必须是一个项数比较小的多项式.即 \(\displaystyle f(p) = \sum a_ip^{b_i}\). 对于一个质数 \(p\) ,\(f(p^k)\) 的表达式必须可以由 \(f(p)\) 快速得到…
[复习]莫比乌斯反演,杜教筛,min_25筛 莫比乌斯反演 做题的时候的常用形式: \[\begin{aligned}g(n)&=\sum_{n|d}f(d)\\f(n)&=\sum_{n|d}\mu(\frac{d}{n})g(d)\end{aligned}\] 实际上还有 \[\begin{aligned}g(n)&=\sum_{d|n}f(d)\\f(n)&=\sum_{d|n}\mu(\frac{n}{d})g(d)\end{aligned}\] 证明可以看看这里,…
题目:https://loj.ac/problem/6053 min_25筛:https://www.cnblogs.com/cjyyb/p/9185093.html 这里把计算 s( n , j ) 需要的“质数部分的贡献”分成两部分算,令 \( g(n,j)=\sum\limits_{i=1}^{n}[i \in P or min_i > p_j]i \) , \( h(n,j)=\sum\limits_{i=1}^{n}[i \in P or min_i > p_j]1 \) ,其中 P…
LINK:Min_25筛 新版感觉有点鬼畜 而且旧版的也够用了至少. 这个并不算很简单也不算很困难的知识点 学起来还是很麻烦的. (误入了很多dalao的blog 说的云里雾里的 甚是懵逼 这里推荐几个blog一起看 能看出很多门道 网上资源辣么多 我自然也不会去写一个非常正常的学习笔记辣.. 只会写几个容易疑惑的地方. 注意 学会 和会写代码是两码事 因为代码中有一些细节需要细细揣摩. 关于g数组的求出 其转移静下心来理解还是可以看懂的这里不再赘述. 注意 为了方便\(f(1)\)最后考虑.…
前言 为什么叫学习小记呢?因为暂时除了模板题就没有做其他的东西了.(雾 这个东西折磨了我一整天,看得我身不如死,只好结合代码理解题解,差点死在机房.(话说半天综合半天竞赛真是害人不浅) 为了以后忘了再受荼毒,这里还是写一下,如果有人会看到的话,希望可以帮助到吧.(话说这个东西我已经拖了好久了啊!!!) (话说我怎么这么多话说啊?!!) Min_25 筛 这个东西是由聚聚\(\texttt{Min-25}\)发明了,所以我们称之为\(\texttt{Min-25}\)筛.(感觉有点民科了)那就不废…
  赛上想写,Track Lost 了属于是. \(\mathscr{Intro}\)   Min_25 筛是用于求积性函数前缀和,同时顺带求出一些"有意思"的信息的筛法.   一些记号约定 \(\mathbb P\) 为素数集,对于以 \(p\) 为记号的数,有 \(p\in\mathbb P\). \(p_i\) 表示第 \(i\) 小的素数.特别地,\(p_0=1\). \(\newcommand{\lpf}[0]{\operatorname{lpf}} \lpf(n)\) 表示…
杜教筛 \(\) 是 \(\) 的前缀和,\(\), \(\) 同理. 假设 \( × = ℎ\) ,并且 \(, \) 易求出,\(\) 难求出. 那么 \[H () = \sum_{ \cdot ≤} () () = \sum_{≤} () (\frac {} {})\\ = f(1)\cdot () + \sum_{2≤≤} () (\frac {} {})\] 有: \[f(1)\cdot G(n)=H(n)-\sum_{2≤≤} () (\frac {} {}) \] 整除分块,可以在…