动态规划-最长上升子序列(LIS)】的更多相关文章

LIS定义 一个数的序列bi,当b1 < b2 < … < bS的时候,我们称这个序列是上升的.对于给定的一个序列(a1, a2, …, aN),我们可以得到一些上升的子序列(ai1, ai2, …, aiK),这里1 <= i1 < i2 < … < iK <= N.比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等.这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8). 求解…
最长递增子序列是动态规划中最经典的问题之一,我们从讨论这个问题开始,循序渐进的了解动态规划的相关知识要点. 在一个已知的序列 {a1, a 2,...an}中,取出若干数组成新的序列{ai1, ai 2,...aim},其中下标 i1.i2…im保持递增,即新数列中的各个数之间依旧保持原数列中的先后顺序,那么我们称新的序列{ai1, ai 2,...aim}为原序列的一个子序列.若在子序列中,当下标 ix > iy时,aix > aiy,那么我们称这个子序列为原序列的一个递增子序列.最长递增子…
最长递增子序列是动态规划中经典的问题,详细如下: 在一个已知的序列{a1,a2,...,an}中,取出若干数组组成新的序列{ai1,ai2,...,aim},其中下标i1,i2,...,im保持递增,即新数列中的各个数之间依旧保持原数列中的先后顺序,那么我们称新的序列{ai1,ai2,...,aim}为原序列的一个子序列.若在子序列中,当下标ix > iy时,aix > aiy,那么我们称这个子序列为原序列的一个递增子序列.最长递增子序列问题,就是在一个给定的原序列中,求得最长递增子序列长度.…
时间复杂度为〇(nlogn)的算法,下面就来看看. 我们再举一个例子:有以下序列A[]=3 1 2 6 4 5 10 7,求LIS长度. 我们定义一个B[i]来储存可能的排序序列,len为LIS长度.我们依次把A[i]有序地放进B[i]里.(为了方便,i的范围就从1~n表示第i个数) A[1]=3,把3放进B[1],此时B[1]=3,此时len=1,最小末尾是3 A[2]=1,因为1比3小,所以可以把B[1]中的3替换为1,此时B[1]=1,此时len=1,最小末尾是1 A[3]=2,2大于1,…
l例如:对于[3,1,4,2,5],最长上升子序列的长度是3 arr = [3,1,4,5,9,2,6,5,0] def lis(arr): #dp[i]表示第i个位置的值为尾的数组的最长递增子序列的长度 #初始化数组,假定数组中每个值的最长子序列就是它自己,即都是1 dp = [1 for _ in range(len(arr))] #遍历数组 for i in range(len(arr)): #当遍历到第i个位置时,再依次从0开始遍历到 for j in range(i): #如果第i个位…
题目链接:http://poj.org/problem?id=2533 解题报告: 状态转移方程: dp[i]表示以a[i]为结尾的LIS长度 状态转移方程: dp[0]=1; dp[i]=max(dp[k])+1,(k<i),(a[k]<a[i]) #include <stdio.h> #define MAX 1005 int a[MAX];///存数据 int dp[MAX];///dp[i]表示以a[i]为结尾的最长递增子序列(LIS)的长度 int main() { int…
最长上升子序列LIS问题属于动态规划的初级问题,用纯动态规划的方法来求解的时间复杂度是O(n^2).但是如果加上二叉搜索的方法,那么时间复杂度可以降到nlog(n).  具体分析参考:http://blog.chinaunix.net/uid-26548237-id-3757779.html 代码: #include <iostream> using namespace std; int LIS_nlogn(int *arr, int len) { int *LIS = new int[len…
[本文链接] http://www.cnblogs.com/hellogiser/p/dp-of-LIS.html [分析] 思路一:设序列为A,对序列进行排序后得到B,那么A的最长递增子序列LIS就是序列A和B的最长公共子序列LCS,即LIS(A) = LCS(A,B).时间复杂度为n^2. 思路二:动态规划.时间复杂度为n^2,可以进一步优化为n^lgn. [代码]  C++ Code  1234567891011121314151617181920212223242526272829303…
最长公共子序列LCS Lintcode 77. 最长公共子序列 LCS问题是求两个字符串的最长公共子序列 \[ dp[i][j] = \left\{\begin{matrix} & max(dp[i-1][j], dp[i][j-1]), s[i] != s[j]\\ & dp[i-1][j-1] + 1, s[i] == s[j] \end{matrix}\right. \] 许多问题可以变形为LCS问题以求解 class Solution { public: /** * @param…
1134 最长递增子序列 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递增的) 例如:5 1 6 8 2 4 5 10,最长递增子序列是1 2 4 5 10.   Input 第1行:1个数N,N为序列的长度(2 <= N <= 50000) 第2 - N + 1行:每行1个数,对应序列的元素(-10^9 <= S[i] <= 10^9) Output 输…