这个系列,重点关注如何实现,至于算法基础,参考Andrew的公开课 相较于线性回归,logistic回归更适合用于分类 因为他使用Sigmoid函数,因为分类的取值是0,1 对于分类,最完美和自然的函数,当然是Heaviside step function,即0-1阶跃函数,但是这个函数中数学上有时候比较难处理 所以用Sigmoid函数来近似模拟阶跃函数, 可以看到Sigmoid在增大坐标尺度后,已经比较接近于阶跃函数 其中, 而logistic回归就是要根据训练集找到,最优的w向量 下面就通过…
[Machine Learning]学习笔记-Logistic Regression 模型-二分类任务 Logistic regression,亦称logtic regression,翻译为"对数几率回归",是一种分类学习方法.和先前的线性回归模型不同的是,输出的y一般是离散量的集合,如输出\(y \in \{0,1\}\)的二分类任务. 考虑二分类任务,线性回归模型产生的\(Z=\theta ^TX\)是连续的实值,需要用一个函数\(g(\theta ^TX)\)将z转换为0/1值.…
此文是斯坦福大学,机器学习界 superstar - Andrew Ng 所开设的 Coursera 课程:Machine Learning 的课程笔记. 力求简洁,仅代表本人观点,不足之处希望大家探讨. 课程网址:https://www.coursera.org/learn/machine-learning/home/welcome Week 2:Linear Regression with Multiple Variables笔记:http://blog.csdn.net/ironyoung…
Handwritten digits recognition (0-9) Multi-class Logistic Regression 1. Vectorizing Logistic Regression (1) Vectorizing the cost function (2) Vectorizing the gradient (3) Vectorizing the regularized cost function (4) Vectorizing the regularized gradi…
朴素贝叶斯与逻辑回归的区别: 朴素贝叶斯 逻辑回归 生成模型(Generative model) 判别模型(Discriminative model) 对特征x和目标y的联合分布P(x,y)建模,使用极大后验概率估计法估计出最有可能的P(y|x) 直接对后验概率P(y|x)建模,使用极大似然估计法使其最大化 不需要优化参数,先用极大似然估计法估计出先验概率P(y)和条件概率P(x|y),然后计算出极大后验概率P(y|x) 需要优化参数,先用极大似然估计法得出损失函数,再用梯度下降法等优化参数 假…
logistic regression cost function(single example) 图像分布 logistic regression cost function(m examples) Writting cost function in a more convenient form with just one line To fit parameter θ Using gradient descent to minimize cost function 看上去和gradient…
1. Decision boundary when hθ(x) > 0, g(z) = 1; when hθ(x) < 0, g(z) = 0. so the hyppthesis is: 2. cost function to fit parameters θ: to make a prediction given new x: Output        3. Gradient Descent Repeat { (simultaneously update all θj) }…
在之前的问题讨论中,研究的都是连续值,即y的输出是一个连续的值.但是在分类问题中,要预测的值是离散的值,就是预测的结果是否属于某一个类.例如:判断一封电子邮件是否是垃圾邮件:判断一次金融交易是否是欺诈:之前我们也谈到了肿瘤分类问题的例子,区别一个肿瘤是恶性的还是良性的. 我们先说二分类问题,我们将一些自变量分为负向类和正向类,那么因变量为0,1:0表示负向类,1表示正向类. 如果用线性回归来讨论分类问题,那么假设输出的结果会大于1,但是我们的假设函数的输出应该是在0,1之间.所以我们把输出结果在…
机器学习实战(Machine Learning in Action)学习笔记————05.Logistic回归 关键字:Logistic回归.python.源码解析.测试作者:米仓山下时间:2018-10-26机器学习实战(Machine Learning in Action,@author: Peter Harrington)源码下载地址:https://www.manning.com/books/machine-learning-in-actiongit@github.com:pbharri…
在手撕机器学习系列文章的上一篇,我们详细讲解了线性回归的问题,并且最后通过梯度下降算法拟合了一条直线,从而使得这条直线尽可能的切合数据样本集,已到达模型损失值最小的目的. 在本篇文章中,我们主要是手撕Logistic回归,这个在李航老师的<统计学习方法>一书中也叫做为逻辑斯谛回归.听到回归一词,有的读者可能会想,上一篇线性回归求解的是拟合问题,这篇文章手撕的是Logistic回归,会不会也是一个拟合问题?只不过使用到的算法原理不同而已,而求解的问题是一致的??? 其实不然,Logistic回归…