很幸运参与零售云快消平台的公有云搭建及孵化项目.零售云快消平台源于零售云家电3C平台私有项目,是与公司业务强耦合的.为了适用于全场景全品类平台,集团要求项目平台化,我们抢先并承担了此任务.并由我来主要负责平台建设及项目落地.  今天讲解在零售云快消平台中使用的图片服务FastDFS集群搭建说明,此集群模式是根据单机版的安装说明,在之前已经分享过一篇 一张图讲解单机FastDFS图片服务器安装步骤(修订版),改造成最少机器分布式集群安装说明. FastDFS是什么?  FastDFS是一个开源的…
方案: 使用HAproxy:当其中一台ElasticSearch Master宕掉时,ElasticSearch集群会自动将运行正常的节点提升为Master,但HAproxy不会将失败的请求重新分发到新的Master Node.不知道是不是我的HAproxy配置有问题,求助一下网友们.(放弃治疗) 使用ElasticSearch:单search load balancer(外层负载均衡节点,改天测试下Nginx).双coordinator(调度节点).若干workhorse(数据节点).先后在2…
什么是MySQL集群,什么是MySQL集群,如果你想知道什么是MySQL集群,我现在就带你研究. MySQL 是一款流行的轻量级数据库,很多应用都是使用它作为数据存储.作为小型应用的数据库,它完全可以胜任,但是如果是大型应用,高性能高可用的要求,单服务器部署的MySQL就不够了.MySQL NDB Cluster 为这个需求提供了一个官方的集群解决方案. MySQL NDB Cluster 是什么 MySQL NDB Cluster 是 MySQL 的一个高可用.高冗余版本,适用于分布式计算环境…
序 由于单master节点的kubernetes集群,存在master节点异常之后无法继续使用的缺陷.本文参考网管流程搭建一套多master节点负载均衡的kubernetes集群.官网给出了两种拓扑结构:堆叠control plane node和external etcd node,本文基于第一种拓扑结构进行搭建,使用keepalived + haproxy搭建,完整的拓扑图如下: (堆叠control plane node) (external etcd node) mastre节点需要部署e…
亿级Web系统搭建:单机到分布式集群 当一个Web系统从日访问量10万逐步增长到1000万,甚至超过1亿的过程中,Web系统承受的压力会越来越大,在这个过程中,我们会遇到很多的问题.为了解决这些性能压力带来问题,我们需要在Web系统架构层面搭建多个层次的缓存机制.在不同的压力阶段,我们会遇到不同的问题,通过搭建不同的服务和架构来解决. Web负载均衡 Web负载均衡(Load Balancing),简单地说就是给我们的服务器集群分配"工作任务",而采用恰当的分配方式,对于保护处于后端的…
转自:http://www.lanceyan.com/tech/arch/mongodb_shard1.html 按照上一节中<搭建高可用mongodb集群(三)-- 深入副本集>搭建后还有两个问题没有解决: 从节点每个上面的数据都是对数据库全量拷贝,从节点压力会不会过大? 数据压力大到机器支撑不了的时候能否做到自动扩展? 在系统早期,数据量还小的时候不会引起太大的问题,但是随着数据量持续增多,后续迟早会出现一台机器硬件瓶颈问题的.而mongodb主打的就是海量数据架构,他不能解决海量数据怎么…
按照上一节中<搭建高可用mongodb集群(三)—— 深入副本集>搭建后还有两个问题没有解决: 从节点每个上面的数据都是对数据库全量拷贝,从节点压力会不会过大? 数据压力大到机器支撑不了的时候能否做到自动扩展? 在系统早期,数据量还小的时候不会引起太大的问题,但是随着数据量持续增多,后续迟早会出现一台机器硬件瓶颈问题的.而mongodb主打的就是海量数据架构,他不能解决海量数据怎么行!不行!“分片”就用这个来解决这个问题. 传统数据库怎么做海量数据读写?其实一句话概括:分而治之.上图看看就清楚…
在上一篇文章<搭建高可用MongoDB集群(一)——配置MongoDB> 提到了几个问题还没有解决. 主节点挂了能否自动切换连接?目前需要手工切换. 主节点的读写压力过大如何解决? 从节点每个上面的数据都是对数据库全量拷贝,从节点压力会不会过大? 数据压力大到机器支撑不了的时候能否做到自动扩展? 这篇文章看完这些问题就可以搞定了.NoSQL的产生就是为了解决大数据量.高扩展性.高性能.灵活数据模型.高可用性.但是光通过主从模式的架构远远达不到上面几点,由此MongoDB设计了副本集和分片的功能…
按照上一节中<搭建高可用mongodb集群(三)—— 深入副本集>搭建后还有两个问题没有解决: 从节点每个上面的数据都是对数据库全量拷贝,从节点压力会不会过大? 数据压力大到机器支撑不了的时候能否做到自动扩展? 在系统早期,数据量还小的时候不会引起太大的问题,但是随着数据量持续增多,后续迟早会出现一台机器硬件瓶颈问题的.而mongodb主打的就是海量数据架构,他不能解决海量数据怎么行!不行!“分片”就用这个来解决这个问题. 传统数据库怎么做海量数据读写?其实一句话概括:分而治之.上图看看就清楚…
在上一篇文章<搭建高可用MongoDB集群(一)——配置MongoDB> 提到了几个问题还没有解决. 主节点挂了能否自动切换连接?目前需要手工切换. 主节点的读写压力过大如何解决? 从节点每个上面的数据都是对数据库全量拷贝,从节点压力会不会过大? 数据压力大到机器支撑不了的时候能否做到自动扩展? 这篇文章看完这些问题就可以搞定了.NoSQL的产生就是为了解决大数据量.高扩展性.高性能.灵活数据模型.高可用性.但是光通过主从模式的架构远远达不到上面几点,由此MongoDB设计了副本集和分片的功能…
按照上一节中<搭建高可用mongodb集群(三)-- 深入副本集>搭建后还有两个问题没有解决: 从节点每个上面的数据都是对数据库全量拷贝,从节点压力会不会过大? 数据压力大到机器支撑不了的时候能否做到自动扩展? 在系统早期,数据量还小的时候不会引起太大的问题,但是随着数据量持续增多,后续迟早会出现一台机器硬件瓶颈问题的.而mongodb主打的就是海量数据架构,他不能解决海量数据怎么行!不行!"分片"就用这个来解决这个问题. 传统数据库怎么做海量数据读写?其实一句话概括:分而…
从节点每个上面的数据都是对数据库全量拷贝,从节点压力会不会过大? 数据压力大到机器支撑不了的时候能否做到自动扩展? 在系统早期,数据量还小的时候不会引起太大的问题,但是随着数据量持续增多,后续迟早会出现一台机器硬件瓶颈问题的.而mongodb主打的就是海量数据架构,他不能解决海量数据怎么行!不行!“分片”就用这个来解决这个问题. 传统数据库怎么做海量数据读写?其实一句话概括:分而治之.上图看看就清楚了,如下 taobao岳旭强在infoq中提到的 架构图: 上图中有个TDDL,是taobao的一…
系列文章:[建议从第二章开始] [ELK][docker][elasticsearch]1. 使用Docker和Elasticsearch+ kibana 5.6.9 搭建全文本搜索引擎应用 集群,安装ik分词器 [ELK][docker][elasticsearch]2.使用elasticSearch+kibana+logstash+ik分词器+pinyin分词器+繁简体转化分词器  6.5.4 启动   ELK+logstash概念描述 [ELK][ElasticSearch]3.es入门基…
在上一篇文章<搭建高可用MongoDB集群(一)--配置MongoDB> 提到了几个问题还没有解决. 主节点挂了能否自动切换连接?目前需要手工切换. 主节点的读写压力过大如何解决? 从节点每个上面的数据都是对数据库全量拷贝,从节点压力会不会过大? 数据压力大到机器支撑不了的时候能否做到自动扩展? 这篇文章看完这些问题就可以搞定了.NoSQL的产生就是为了解决大数据量.高扩展性.高性能.灵活数据模型.高可用性.但是光通过主从模式的架构远远达不到上面几点,由此MongoDB设计了副本集和分片的功能…
转自:http://www.lanceyan.com/tech/mongodb/mongodb_repset1.html 在上一篇文章<搭建高可用MongoDB集群(一)——配置MongoDB> 提到了几个问题还没有解决. 主节点挂了能否自动切换连接?目前需要手工切换. 主节点的读写压力过大如何解决? 从节点每个上面的数据都是对数据库全量拷贝,从节点压力会不会过大? 数据压力大到机器支撑不了的时候能否做到自动扩展? 这篇文章看完这些问题就可以搞定了.NoSQL的产生就是为了解决大数据量.高扩展…
在上一篇文章<搭建高可用mongodb集群(二)—— 副本集> 介绍了副本集的配置,这篇文章深入研究一下副本集的内部机制.还是带着副本集的问题来看吧! 副本集故障转移,主节点是如何选举的?能否手动干涉下架某一台主节点. 官方说副本集数量最好是奇数,为什么? mongodb副本集是如何同步的?如果同步不及时会出现什么情况?会不会出现不一致性? mongodb的故障转移会不会无故自动发生?什么条件会触发?频繁触发可能会带来系统负载加重? Bully算法 mongodb副本集故障转移功能得益于它的选…
在大数据的时代,传统的关系型数据库要能更高的服务必须要解决高并发读写.海量数据高效存储.高可扩展性和高可用性这些难题.不过就是因为这些问题Nosql诞生了. NOSQL有这些优势: 大数据量,可以通过廉价服务器存储大量的数据,轻松摆脱传统mysql单表存储量级限制. 高扩展性,Nosql去掉了关系数据库的关系型特性,很容易横向扩展,摆脱了以往老是纵向扩展的诟病. 高性能,Nosql通过简单的key-value方式获取数据,非常快速.还有NoSQL的Cache是记录级的,是一种细粒度的Cache,…
搭建高可用mongo集群3.4版本 说在开始之前:在搭建这个环境之前,已经有了一个师兄搭好的环境,虽然一样很棒,但是没有经过自己的手出来的东西,还是不属于自己,所以摸索着自己搭建一个吧,好巧不巧的是,新的版本中跟以前的版本搭建方式有了一些区别,解决这些问题,颇费了一番周折,在网上查不到有助于解决的信息,索性就开始了撰写自己的第一篇博客,意料之外,情理之中,我知道早晚有一天会开始写,只是不确切的知道什么时候开始,这个时候来了,索性就这样做吧. 在大数据的时代,传统的关系型数据库要能更高的服务必须要…
在上一篇文章<搭建高可用mongodb集群(二)-- 副本集> 介绍了副本集的配置,这篇文章深入研究一下副本集的内部机制.还是带着副本集的问题来看吧! 副本集故障转移,主节点是如何选举的?能否手动干涉下架某一台主节点. 官方说副本集数量最好是奇数,为什么? mongodb副本集是如何同步的?如果同步不及时会出现什么情况?会不会出现不一致性? mongodb的故障转移会不会无故自动发生?什么条件会触发?频繁触发可能会带来系统负载加重? Bully算法 mongodb副本集故障转移功能得益于它的选…
在大数据的时代,传统的关系型数据库要能更高的服务必须要解决高并发读写.海量数据高效存储.高可扩展性和高可用性这些难题.不过就是因为这些问题Nosql诞生了. NOSQL有这些优势: 大数据量,可以通过廉价服务器存储大量的数据,轻松摆脱传统mysql单表存储量级限制. 高扩展性,Nosql去掉了关系数据库的关系型特性,很容易横向扩展,摆脱了以往老是纵向扩展的诟病. 高性能,Nosql通过简单的key-value方式获取数据,非常快速.还有NoSQL的Cache是记录级的,是一种细粒度的Cache,…
原文:Redis之高可用.集群.云平台搭建 文章大纲 一.基础知识学习二.Redis常见的几种架构及优缺点总结三.Redis之Redis Sentinel(哨兵)实战四.Redis之Redis Cluster(分布式集群)实战五.Java之Jedis连接Redis(Redis Cluster版本)六.Redis之云平台介绍七.项目源码与资料下载八.参考文章   一.基础知识学习   Redis的基础包括以下内容,可参考文章https://www.cnblogs.com/WUXIAOCHANG/p…
搭建高可用mongodb集群(一)——配置mongodb 搭建高可用mongodb集群(二)—— 副本集 搭建高可用mongodb集群(三)—— 深入副本集内部机制 搭建高可用mongodb集群(四)—— 分片…
当一个Web系统从日访问量10万逐步增长到1000万,甚至超过1亿的过程中,Web系统承受的压力会越来越大,在这个过程中,我们会遇到很多的问题.为了解决这些性能压力带来问题,我们需要在Web系统架构层面搭建多个层次的缓存机制.在不同的压力阶段,我们会遇到不同的问题,通过搭建不同的服务和架构来解决. Web负载均衡 Web负载均衡(Load Balancing),简单地说就是给我们的服务器集群分配"工作任务",而采用恰当的分配方式,对于保护处于后端的Web服务器来说,非常重要. 负载均衡…
当一个Web系统从日访问量10万逐步增长到1000万,甚至超过1亿的过程中,Web系统承受的压力会越来越大,在这个过程中,我们会遇到很多的问题.为了解决这些性能压力带来问题,我们需要在Web系统架构层面搭建多个层次的缓存机制.在不同的压力阶段,我们会遇到不同的问题,通过搭建不同的服务和架构来解决. Web负载均衡 Web负载均衡(Load Balancing),简单地说就是给我们的服务器集群分配“工作任务”,而采用恰当的分配方式,对于保护处于后端的Web服务器来说,非常重要. 负载均衡的策略有很…
对web系统来说,瓶颈大多在数据库和磁盘IO上面,而不是服务器的计算能力.对于系统伸缩性我们一般有2种解决方案,scale-up(纵向扩展)和scale-out(横向扩展).前者如扩内存,增加单机性能,更换ssd等,虽然看似指标不治本而且比较昂贵,但确实是非常有效的,大多数应用的数据规模不是很大,当内存足够缓存下所有数据的时候,磁盘就没有什么压力了:后者譬如各类分布式解决方案,冗余磁盘阵列等. 在我看来,mysql读写分离是一个scale-up和scale-out的结合体,通过多个机器服务来提升…
简介 Ganglia可以监控分布式集群中硬件资源的使用情况,例如CPU,内存,网络等资源.通过Ganglia可以监控Hadoop集群在运行过程中对集群资源的调度,作为简单地运维参考. 环境搭建流程 1.我们先在主机master01上面搭建好Ganglia环境 2.在master01主机上解压JDK和Hadoop到安装目录.修改配置文件 3.克隆出两台主机slave01,slave02并修改主机名和IP主机名映射.做免密码登录 4.启动Ganglia和Hadoop集群.实现wordcount实例…
在大数据的时代,传统的关系型数据库要能更高的服务必须要解决高并发读写.海量数据高效存储.高可扩展性和高可用性这些难题.不过就是因为这些问题Nosql诞生了. NOSQL有这些优势: 大数据量,可以通过廉价服务器存储大量的数据,轻松摆脱传统mysql单表存储量级限制. 高扩展性,Nosql去掉了关系数据库的关系型特性,很容易横向扩展,摆脱了以往老是纵向扩展的诟病. 高性能,Nosql通过简单的key-value方式获取数据,非常快速.还有NoSQL的Cache是记录级的,是一种细粒度的Cache,…
一 下载安装包 1 官方下载 官方下载地址:http://spark.apache.org/downloads.html 2  安装前提 Java8         安装成功 zookeeper  安装参考:CentOS7.5搭建Zookeeper3.4.12集群 hadoop       安装参考:CentOS7.5搭建Hadoop2.7.6集群 Scala          安装成功 注意:从Spark2.0版开始,默认使用Scala 2.11构建.Scala 2.10用户应该下载Spark…
一.部署环境 序号 hostname ip 备注 1 manager107 10.0.3.107 centos7;3.10.0-957.1.3.el7.x86_64 2 worker68 10.0.3.68 centos7;3.10.0-957.1.3.el7.x86_64 3 worker80 10.0.3.80 centos7;3.10.0-957.1.3.el7.x86_64 docker版本 docker version Client: Version: API version: 1.3…
转载自:LANCEYAN.COM 在大数据的时代,传统的关系型数据库要能更高的服务必须要解决高并发读写.海量数据高效存储.高可扩展性和高可用性这些难题.不过就是因为这些问题Nosql诞生了. NOSQL有这些优势: 大数据量,可以通过廉价服务器存储大量的数据,轻松摆脱传统mysql单表存储量级限制. 高扩展性,Nosql去掉了关系数据库的关系型特性,很容易横向扩展,摆脱了以往老是纵向扩展的诟病. 高性能,Nosql通过简单的key-value方式获取数据,非常快速.还有NoSQL的Cache是记…