FWT求解的是一类问题:\( a[i] = \sum\limits_{j\bigoplus k=i}^{} b[j]*c[k] \) 其中,\( \bigoplus \) 可以是 or,and,xor 三种问题的解决思路都是对多项式 \( a \) 构造一个 \( a' \),令 \( a' = b' * c' \): 那么只需要把 \( b \) 变换成 \( b' \),\( c \) 变换成 \( c' \),然后乘出 \( a' \),再逆变换得到 \( a \): 下面问题就变成如何快…
简介 最近公共祖先 \(lca(a,b)\) 指的是a到根的路径和b到n的路径的深度最大的公共点. 定理. 以 \(r\) 为根的树上的路径 \((a,b) = (r,a) + (r,b) - 2 * (r,fa(lca))\). (树上差分) 求法 tarjan 离线算法, 总时间 \(O(n+q)\). (q表示询问次数) //利用前向星存储询问 struct te{int t,pr,lca;}edge[1000050],qedge[1000050]; int head[500050],pe…
本文为原创??? 作者写这篇文章的时候刚刚初一毕业…… 如有错误请各位大佬指正 从例题入手 洛谷P3915[HNOI2008]玩具装箱toy Step0:读题 Q:暴力? 如果您学习过dp 不难推出dp方程 设dp[i]表示放置前i个物品需要的最小价值 dp[i]=min(dp[j]+(sum[i]-sum[j-1]+i-j-L)^2) sum[i]表示前缀和 暴力分有了!!恭喜! 下面我们引入斜率优化: 首先进行一个变形: 原来的式子可以变为:f[i]=min(f[j]+(sum[i]-sum…
花了2h总算把边带权并查集整明白了qaq 1.边带权并查集的用途 众所周知,并查集擅长维护与可传递关系有关的信息.然而我们有时会发现并查集所维护的信息不够用,这时"边带权并查集"就应运而生了. 2.例题与思路 这里通过例题 洛谷P1196 [NOI2002] 银河英雄传说 来介绍边带权并查集的思想.题面请点击链接查看. 2.1.暴力 拿到这道题我的第一想法就是用链表模拟.对于两艘在同一列的战舰,只需知道它们到队首的距离(设距离分别为 \(dis_1\) 和 \(dis_2\))就可以知…
稍微看了看刘汝佳的白皮书,“实用主义”的STL实在是香到我了,而且在实验室大佬的推荐下我开始了stl的学习. 每篇附带一个题目方便理解,那行,直接开始. 毕竟是实用主义,所以就按照给的题目的例子来理解需要用到的函数,算法题目里用的多的函数也会拿出来晒一晒,其他就无所谓啦. 栈(stack) push.pop.size.empty push 入栈一个元素 pop 出栈一个元素,pop无返回值 top 取栈顶元素 size 查看元素个数 empty() 当队列为空时,返回true (来一张直观的图)…
队(Queue) 队简单来说就是一个先进先出的“栈”,但是不同于标准“栈”的先进后出. 基本操作: push(x) 将x压入队列的末端 pop() 弹出队列的第一个元素(队顶元素),注意此函数并不返回任何值 front() 返回第一个元素(队顶元素) back() 返回最后被压入的元素(队尾元素) empty() 当队列为空时,返回true size() 返回队列的长度 来一张图值观理解 接下来就按照题目中的案例来理解 P1540 机器翻译 题目背景 小晨的电脑上安装了一个机器翻译软件,他经常用…
题目描述: 利用二叉搜索树的特点,如果p.q的值都小于root,说明p q 肯定在root的左子树中:如果p q都大于root,说明肯定在root的右子树中,如果一个在左一个在右 则说明此时的root记为对应的最近公共祖先 方法一:递归 class Solution: def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode': if max(p.val,q.val) <…
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格式: 第一行包含三个整数N.M.P,分别表示该数列数字的个数.操作的总个数和模数. 第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值. 接下来M行每行包含3或4个整数,表示一个操作,具体如下: 操作1: 格式:1 x y k 含义:将区间[x,y]内每个数乘上k 操作2: 格式:…
高级的算法——倍增!!! 根据LCA的定义,我们可以知道假如有两个节点x和y,则LCA(x,y)是 x 到根的路 径与 y 到根的路径的交汇点,同时也是 x 和 y 之间所有路径中深度最小的节 点,所以,我们可以用遍历路径的方法求 LCA. 但想想都知道啦,这种遍历的方法肯定too slow,最坏情况时可达到O(n),数据大点儿,就光荣TLE了. 所以我们高级的化身——倍增算法就出现了! 谈谈倍增—— 倍增简单来讲就是两个点跳到同一高度后,再一起往上跳,直到跳到一个共同的点,就能找到它们的最近公…
关于Django模板标签官方网址https://docs.djangoproject.com/en/1.11/ref/templates/builtins/ 1.IF标签 Hello World/views.py from django.shortcuts import render class Person(object): def __init__(self,name,age,sex): self.name=name self.age=age self.sex=sex def say(sel…