PyTorch上路】的更多相关文章

PyTorch torch.autograd模块 深度学习的算法本质上是通过反向传播求导数, PyTorch的autograd模块实现了此功能, 在Tensor上的所有操作, autograd都会为它们自动提供微分, 避免手动计算导数的复杂过程. autograd.Variable是autograd的核心类, 它简单封装了Tensor(最新版PyTorch已经将Variable和Tensor的API合并, 以后直接使用Tensor即可, 不要使用Variable了) backward: 一个Sc…
php大力力 [001节]2015-08-21.php在百度文库的几个基础教程新手上路日记 大力力php 大力同学 2015-08-21 15:28 话说,嗯嗯,就是我自己说,做事认真要用表格,学习技术要用博客,就不细说啦,就是这个标准啦. 今天要做一个技术博客,帮助我自己学习成长,快速想了一下,赶紧开一个博客吧. csdn感觉太老,博客园不错,注册了账号,申请了博客就通过了,感谢管理员. 您的博客申请已批准 2015-08-21 15:15 我这个密码还要加个特殊符号,嗯嗯,我要记下来,防止我…
负重前行的婚纱线上路 - i天下网商-最具深度的电商知识媒体 负重前行的婚纱线上路…
http://my.oschina.net/vigiles/blog/125127 Mybatis上路_05-使用命令行自动生成   1人收藏此文章, 我要收藏 发表于1个月前(2013-04-24 22:22) , 已有25次阅读 ,共0个评论 目录:[ - ] 1.数据准备: 1)建库: 2)建表: 3)预设数据: 2.编写Generator执行配置文件: 3.搭建执行环境: 1)创建项目包: 2)准备文件: 4.执行命令行语句: 5.查看生成的文件: 6.查看文件内容: 1) cn/cvu…
Mybatis上路_06-使用Java自动生成 11人收藏此文章, 我要收藏发表于1个月前(2013-04-24 23:05) , 已有151次阅读 ,共0个评论 目录:[ - ] 1.编写Generator执行配置文件: 2.在MyEclipse中建空web项目: 3.编写并执行Java程序: 4.查看并修改生成的文件: 5.测试,使用生成的文件查询: 1)导入MyBatis的jar包: 2)创建MyBatis的xml配置文件: 3)Java测试代码: 1.编写Generator执行配置文件:…
Jeff Molofee(NeHe)的OpenGL教程- 新手上路 译者的话:NeHe的教程一共同拥有30多课,内容翔实,而且不断更新 .国内的站点实在应该向他们学习.令人吃惊的是,NeHe提供的例程源代码差点儿都有跨平台的不同编译版本号,涉及从Visual C++.Borland C++.Visual Basic.MacOS X/GLUT.Linux/GLX.Code Warrior.Delphi.C++ Builder.MASM.ASM.MingW32&Allegro以及Python等等的不…
这篇文章译自 Christopher LaPollo 先生的 Unity 4.3 2D 教程的第一部分 Unity 4.3 2D Tutorial: Getting Started 感谢这套优秀教程的作者@Chris!译者水平有限,翻译不准确的地方请参考原文,文中所有Unity的关键字都没有翻译. 如果你尝试用更早版本的Unity来制作2D游戏,那当然没问题,但你也知道必须先解决一些问题. 可能你通过给quad应用纹理,使用脚本调整纹理参数来实现一些动画.由于它们在3D环境,如果添加物理效果,你…
1.下载Anaconda3 首先需要去Anaconda官网下载最新版本Anaconda3(https://www.continuum.io/downloads),我下载是是带有python3.6的Anaconda3-4.4.0-Linux-x86_64.sh. 2.安装Annconda3 bash Anaconda3-4.4.0-Linux-x86_64.sh   在home/ubuntu出现anaconda3文件夹(注:ubuntu是系统用户名.下同). source ~/.bashrc 3.…
当我使用pycharm运行  (https://github.com/Joyce94/cnn-text-classification-pytorch )  pytorch程序的时候,在Linux服务器上会开启多个进程,占用服务器的大量的CPU,在windows10上运行此程序的时候,本机的CPU和内存会被吃光,是因为在train.py中有大量的数据训练处理,会开启多个进程,占用大量的CPU和进程. 本机window10 linux服务器开启了多个进程 Linux服务器占用大量CPU 在pytor…
一.介绍 word2vec是Google于2013年推出的开源的获取词向量word2vec的工具包.它包括了一组用于word embedding的模型,这些模型通常都是用浅层(两层)神经网络训练词向量. Word2vec的模型以大规模语料库作为输入,然后生成一个向量空间(通常为几百维).词典中的每个词都对应了向量空间中的一个独一的向量,而且语料库中拥有共同上下文的词映射到向量空间中的距离会更近. word2vec目前普遍使用的是Google2013年发布的C语言版本,现在也有Java.C++.p…
(Demo) 这是最近两个月来的一个小总结,实现的demo已经上传github,里面包含了CNN.LSTM.BiLSTM.GRU以及CNN与LSTM.BiLSTM的结合还有多层多通道CNN.LSTM.BiLSTM等多个神经网络模型的的实现.这篇文章总结一下最近一段时间遇到的问题.处理方法和相关策略,以及经验(其实并没有什么经验)等,白菜一枚. Demo Site:  https://github.com/bamtercelboo/cnn-lstm-bilstm-deepcnn-clstm-in-…
一.VAE的具体结构 二.VAE的pytorch实现 1加载并规范化MNIST import相关类: from __future__ import print_function import argparse import torch import torch.utils.data import torch.nn as nn import torch.optim as optim from torch.autograd import Variable from torchvision impor…
我们已经了解了如何定义神经网络,计算损失并对网络的权重进行更新. 接下来的问题就是: 一.What about data? 通常处理图像.文本.音频或视频数据时,可以使用标准的python包将数据加载到numpy数组中.然后你可以将这个数组转换成一个torch.Tensor. 对于图片, 涉及到的库有Pillowh和OpenCV. 对于音频,涉及到的库有scipy和librosa 对于文本,无论是原始的Python还是基于Cython的加载,都会用到NLTK或者SpaCy. 我们已经创建了一个名…
我们可以通过torch.nn package构建神经网络. 现在我们已经了解了autograd,nn基于autograd来定义模型并对他们有所区分. 一个 nn.Module模块由如下部分构成:若干层,以及返回output的forward(input)方法. 例如,这张图描述了进行数字图像分类的神经网络: 这是一个简单的前馈( feed-forward)网络,读入input内容,每层接受前一级的输入,并输出到下一级,直到给出outpu结果. 一个经典神经网络的训练程序如下: 1.定义具有可学习参…
在PyTorch中,autograd是所有神经网络的核心内容,为Tensor所有操作提供自动求导方法. 它是一个按运行方式定义的框架,这意味着backprop是由代码的运行方式定义的. 一.Variable autograd.Variable 是autograd中最核心的类. 它包装了一个Tensor,并且几乎支持所有在其上定义的操作.一旦完成了你的运算,你可以调用 .backward()来自动计算出所有的梯度. Variable有三个属性:data,grad以及creator. 访问原始的te…
1.安装Anaconda 安装步骤参考了官网的说明:https://docs.anaconda.com/anaconda/install/linux.html 具体步骤如下: 首先,在官网下载地址 https://www.anaconda.com/download/下载linux版本,这里选用python 3.6版本的anaconda. 然后, 将下载好的Anaconda3-4.4.0-Linux-x86_64.sh放到/usr/tiny目录下,并进入该目录 在当前目录下用bash命令安装ana…
导读 本文讨论了深层神经网络训练困难的原因以及如何使用Highway Networks去解决深层神经网络训练的困难,并且在pytorch上实现了Highway Networks. 一 .Highway Networks 与 Deep Networks 的关系 深层神经网络相比于浅层神经网络具有更好的效果,在很多方面都已经取得了很好的效果,特别是在图像处理方面已经取得了很大的突破,然而,伴随着深度的增加,深层神经网络存在的问题也就越大,像大家所熟知的梯度消失问题,这也就造成了训练深层神经网络困难的…
强烈建议安装anaconda之后再来安装这个pytorch,具体怎么安装百度搜索就知道了. 温馨提示,在安装anaconda的时候记得将"添加到环境变量"(安装的时候是英文的)这一选项选上. 下面假设你已经安装好anaconda了: 1.第一步下载pytorch的安装包: 链接: https://pan.baidu.com/s/1mh6U01i 密码: 8yty 2.打开命令行进入上面所下载的安装包所在的目录,然后输入如下命令: conda install --offline pyto…
1. install and update pip3 2. install numpy and scipy 3. install pytorch…
本文为作者原创,转载请注明出处(http://www.cnblogs.com/mar-q/)by 负赑屃   写在前面: 请参考之前的文章安装好CentOS.NVIDIA相关驱动及软件.docker及加速镜像. 主机运行环境 $ uname -a Linux CentOS -.el7.x86_64 # SMP Tue Jul :: UTC x86_64 x86_64 x86_64 GNU/Linux $ cat /usr/local/cuda/version.txt CUDA Version $…
PyTorch中文文档 PyTorch是使用GPU和CPU优化的深度学习张量库. 说明 自动求导机制 CUDA语义 扩展PyTorch 多进程最佳实践 序列化语义 Package参考 torch torch.Tensor torch.Storage torch.nn torch.nn.functional torch.nn.init torch.optim torch.autograd torch.multiprocessing torch.legacy torch.cuda torch.uti…
torch.nn Parameters class torch.nn.Parameter() 艾伯特(http://www.aibbt.com/)国内第一家人工智能门户,微信公众号:aibbtcom Variable的一种,常被用于模块参数(module parameter). Parameters 是 Variable 的子类.Paramenters和Modules一起使用的时候会有一些特殊的属性,即:当Paramenters赋值给Module的属性的时候,他会自动的被加到 Module的 参…
torch 包 torch 包含了多维张量的数据结构以及基于其上的多种数学操作.另外,它也提供了多种工具,其中一些可以更有效地对张量和任意类型进行序列化. 它有CUDA 的对应实现,可以在NVIDIA GPU上进行张量运算(计算能力>=2.0). http://www.aibbt.com/a/pytorch/ 张量 Tensors torch.is_tensor[source] torch.is_tensor(obj) 如果obj 是一个pytorch张量,则返回True 参数: obj (Ob…
[导读]Kears作者François Chollet刚刚在Twitter贴出最近三个月在arXiv提到的深度学习框架,TensorFlow不出意外排名第一,Keras排名第二.随后是Caffe.PyTorch和Theano,再次是MXNet.Chainer和CNTK. Keras作者François Chollet刚刚在Twitter贴出一张图片,是近三个月来arXiv上提到的深度学习开源框架排行: TensorFlow排名第一,这个或许并不出意外,Keras排名第二,随后是Caffe.PyT…
想直接看公式的可跳至第三节 3.公式修正 一.为什么需要SPP 首先需要知道为什么会需要SPP. 我们都知道卷积神经网络(CNN)由卷积层和全连接层组成,其中卷积层对于输入数据的大小并没有要求,唯一对数据大小有要求的则是第一个全连接层,因此基本上所有的CNN都要求输入数据固定大小,例如著名的VGG模型则要求输入数据大小是 (224*224) . 固定输入数据大小有两个问题: 1.很多场景所得到数据并不是固定大小的,例如街景文字基本上其高宽比是不固定的,如下图示红色框出的文字. 2.可能你会说可以…
Tensorflow 实现 A Tensorflow implementation of CapsNet(Capsules Net) in Hinton's paper Dynamic Routing Between Capsules 项目地址:https://github.com/naturomics/CapsNet-Tensorflow Keras 实现 A Keras implementation of CapsNet in Hinton's paper Dynamic Routing B…
(一)简述---承接上文---基于pytorch实现HighWay Networks之Train Deep Networks 上文已经介绍过Highway Netwotrks提出的目的就是解决深层神经网络训练困难的问题,以及简单的解释了为什么深层神经网络会出现梯度消失和梯度爆炸的问题,这里详细的介绍一些Highway Networks以及使用pytorch实现Highway Networks. (二)Highway Networks 什么是Highway Networks? Highway Ne…
1. 概况 1.1 任务 口语理解(Spoken Language Understanding, SLU)作为语音识别与自然语言处理之间的一个新兴领域,其目的是为了让计算机从用户的讲话中理解他们的意图.SLU是口语对话系统(Spoken Dialog Systems)的一个非常关键的环节.下图展示了口语对话系统的主要流程. SLU主要通过如下三个子任务来理解用户的语言: 领域识别(Domain Detection) 用户意图检测(User Intent Determination) 语义槽填充(…
本文介绍一个基于pytorch的电影推荐系统. 代码移植自https://github.com/chengstone/movie_recommender. 原作者用了tf1.0实现了这个基于movielens的推荐系统,我这里用pytorch0.4做了个移植. 本文实现的模型Github仓库:https://github.com/Holy-Shine/movie_recommend_system 1. 总体框架 先来看下整个文件包下面的文件构成: 其中: Params: 保存模型的参数文件以及模…
目录 准备工作 设置conda国内镜像源 conda 深度学习环境 tensorflow.mxnet.pytorch安装 tensorflow mxnet pytorch Caffe安装 配置文件修改 编译时常见错误 运行时错误 参考 GPU为RTX2080,系统为更新到最新版本的Win10. 准备工作 安装VS2015,到官网地址older-download下载安装 安装Matlab,笔者安装的是Matlab2017b 安装Anaconda3-4.4.0-Windows-x86_64.exe(…