pytorch resnet实现】的更多相关文章

本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson8/resnet_inference.py 这篇文章首先会简单介绍一下 PyTorch 中提供的图像分类的网络,然后重点介绍 ResNet 的使用,以及 ResNet 的源码. 模型概览 在torchvision.model中,有很多封装好的模型. 可以分类 3 类: 经典网络 alexnet vgg resnet inception densenet go…
官方github上已经有了pytorch基础模型的实现,链接 但是其中一些模型,尤其是resnet,都是用函数生成的各个层,自己看起来是真的难受! 所以自己按照caffe的样子,写一个pytorch的resnet18模型,当然和1000分类模型不同,模型做了一些修改,输入48*48的3通道图片,输出7类. import torch.nn as nn import torch.nn.functional as F class ResNet18Model(nn.Module): def __init…
自己看读完pytorch封装的源码后,自己又重新写了一边(模仿其书写格式), 一些问题在代码中说明. import torch import torchvision import argparse import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms, models import torch.uti…
地址:https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py 贴代码 import torch.nn as nn import torch.utils.model_zoo as model_zoo __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152'] model_urls = { 'resne…
目录 1. ResNet理论 2. pytorch实现 2.1 基础卷积 2.2 模块 2.3 使用ResNet模块进行迁移学习 1. ResNet理论 论文:https://arxiv.org/pdf/1512.03385.pdf 残差学习基本单元: 在ImageNet上的结果: 效果会随着模型层数的提升而下降,当更深的网络能够开始收敛时,就会出现降级问题:随着网络深度的增加,准确度变得饱和(这可能不足为奇),然后迅速降级. ResNet模型: 2. pytorch实现 2.1 基础卷积 co…
1.文章原文地址 Deep Residual Learning for  Image Recognition 2.文章摘要 神经网络的层次越深越难训练.我们提出了一个残差学习框架来简化网络的训练,这些网络比之前使用的网络都要深的多.我们明确地将层变为学习关于层输入的残差函数,而不是学习未参考的函数.我们提供了综合的实验证据来表明这个残差网络更容易优化,以及通过极大提升网络深度可以获得更好的准确率.在ImageNet数据集上,我们评估了残差网络,该网络有152层,层数是VGG网络的8倍,但是有更低…
学了几天Pytorch,大致明白代码在干什么了,贴一下.. import torch from torch.utils.data import DataLoader from torchvision import datasets from torchvision import transforms from torch import nn, optim from torch.nn import functional as F class ResBlk(nn.Module): ""&q…
import torch as t import torch.nn as nn import torch.nn.functional as F from torchvision import models # 残差快 残差网络公式 a^[L+] = g(a^[L]+z^[L+]) class ResidualBlock(nn.Module): def __init__(self, inchannel, outchannel, stride=, shortcut=None): #shortcut=…
PyTorch对ResNet网络的实现解析 1.首先导入需要使用的包 import torch.nn as nn import torch.utils.model_zoo as model_zoo # 默认的resnet网络,已预训练 model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/mo…
为什么resnet的输入是一定的? 因为resnet最后有一个全连接层.正是因为这个全连接层导致了输入的图像的大小必须是固定的. 输入为固定的大小有什么局限性? 原始的resnet在imagenet数据集上都会将图像缩放成224×224的大小,但这么做会有一些局限性: (1)当目标对象占据图像中的位置很小时,对图像进行缩放将导致图像中的对象进一步缩小,图像可能不会正确被分类 (2)当图像不是正方形或对象不位于图像的中心处,缩放将导致图像变形 (3)如果使用滑动窗口法去寻找目标对象,这种操作是昂贵…
写在前面 ​ 深度残差网络(Deep residual network, ResNet)自提出起,一次次刷新CNN模型在ImageNet中的成绩,解决了CNN模型难训练的问题.何凯明大神的工作令人佩服,模型简单有效,思想超凡脱俗. ​ 直观上,提到深度学习,我们第一反应是模型要足够"深",才可以提升模型的准确率.但事实往往不尽如人意,先看一个ResNet论文中提到的实验,当用一个平原网络(plain network)构建很深层次的网络时,56层的网络的表现相比于20层的网络反而更差了.…
本文是使用pycharm下的pytorch框架编写一个训练本地数据集的Resnet深度学习模型,其一共有两百行代码左右,分成mian.py.network.py.dataset.py以及train.py文件,功能是对本地的数据集进行分类.本文介绍逻辑是总分形式,即首先对总流程进行一个概括,然后分别介绍每个流程中的实现过程(代码+流程图+文字的介绍). 对于整个项目的流程首先是加载本地数据集,然后导入Resnet网络,最后进行网络训练.整体来说一个完整的小项目,难度并不高,需要有一定的pytorc…
之前在用预训练的ResNet的模型进行迁移训练时,是固定除最后一层的前面层权重,然后把全连接层输出改为自己需要的数目,进行最后一层的训练,那么现在假如想要只是把 最后一层的输出改一下,不需要加载前面层的权重,方法如下: model = torchvision.models.resnet18(pretrained=False) num_fc_ftr = model.fc.in_features model.fc = torch.nn.Linear(num_fc_ftr, 224) model =…
残差网络ResNet resnet是何凯明大神在2015年提出的.并且获得了当年的ImageNet比赛的冠军. 残差网络具有里程碑的意义,为以后的网络设计提出了一个新的思路. googlenet的思路是加宽每一个layer,resnet的思路是加深layer. 论文地址:https://arxiv.org/abs/1512.03385 论文里指出,随着网络深度的增加,模型表现并没有更好,即所谓的网络退化.注意,不是过拟合,而是更深层的网络即便是train error也比浅层网络更高. 这说明,深…
[深度应用]·实战掌握PyTorch图片分类简明教程 个人网站--> http://www.yansongsong.cn/ 项目GitHub地址--> https://github.com/xiaosongshine/image_classifier_PyTorch/ 1.引文 深度学习的比赛中,图片分类是很常见的比赛,同时也是很难取得特别高名次的比赛,因为图片分类已经被大家研究的很透彻,一些开源的网络很容易取得高分.如果大家还掌握不了使用开源的网络进行训练,再慢慢去模型调优,很难取得较好的成…
1. 先导入使用的包,并声明可用的网络和预训练好的模型 import torch.nn as nn import torch.utils.model_zoo as model_zoo #声明可调用的网络 __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152'] #用于加载的预训练好的模型 model_urls = { 'resnet18': 'https://download.pytorc…
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com CNN的层数越多,能够提取到的特征越丰富,但是简单地增加卷积层数,训练时会导致梯度弥散或梯度爆炸. 何凯明2015年提出了残差神经网络,即Reset,并在ILSVRC-2015的分类比赛中获得冠军. ResNet可以有效的消除卷积层数增加带来的梯度弥散或梯度爆炸问题. ResNet的核心思想是网络输出分为2部分恒等映射(identity mapping).残差映射(residual mapping)…
ResNet网络 ResNet原理和实现 总结 一.ResNet原理和实现 神经网络第一次出现在1998年,当时用5层的全连接网络LetNet实现了手写数字识别,现在这个模型已经是神经网络界的“helloworld”,一些能够构建神经网络的库比如TensorFlow.keras等等会把这个模型当成第一个入门例程.后来卷积神经网络(Convolutional Neural Networks, CNN)一出现就秒杀了全连接神经网络,用卷积核代替全连接,大大降低了参数个数,网络因此也能延伸到十几层到二…
原文:https://likewind.top/2019/02/01/Pytorch-dataprocess/ Pytorch系列: PyTorch系列(一) - PyTorch使用总览 PyTorch系列(二) - PyTorch数据读取 PyTorch系列(三) - PyTorch网络构建 PyTorch系列(四) - PyTorch网络设置 参考: PyTorch documentation PyTorch 码源 本文首先介绍了有关预处理包的源码,接着介绍了在数据处理中的具体应用: 其主要…
卷积神经网络的训练是耗时的,很多场合不可能每次都从随机初始化参数开始训练网络.   1.训练 pytorch中自带几种常用的深度学习网络预训练模型,如VGG.ResNet等.往往为了加快学习的进度,在训练的初期我们直接加载pre-train模型中预先训练好的参数,所以这里使用的网络是: torchvision.models.Resnet34(pretrained=True) 然后更改其最后的全连接层.因为resnet网络最后一层分类层fc是对1000种类型进行划分,对于自己的数据集,这里进行的是…
PyTorch常用代码段整理合集 转自:知乎 作者:张皓 众所周知,程序猿在写代码时通常会在网上搜索大量资料,其中大部分是代码段.然而,这项工作常常令人心累身疲,耗费大量时间.所以,今天小编转载了知乎上的一篇文章,介绍了一些常用PyTorch代码段,希望能够为奋战在电脑桌前的众多程序猿们提供帮助! 本文代码基于 PyTorch 1.0 版本,需要用到以下包 import collectionsimport osimport shutilimport tqdm import numpy as np…
在代码中改好存储Log的路径 命令行中输入 tensorboard --logdir /home/huihua/NewDisk1/PycharmProjects/pytorch-deeplab-xception-master/run 会出来一个网站,复制到浏览器即可可视化loss,acc,lr等数据的变化过程. 举例说明pytorch中设置summary的方式: import argparse import os import numpy as np from tqdm import tqdm…
Pytorch预训练模型以及修改 pytorch中自带几种常用的深度学习网络预训练模型,torchvision.models包中包含alexnet.densenet.inception.resnet.squeezenet.vgg等常用网络结构,并且提供了预训练模型,可通过调用来读取网络结构和预训练模型(模型参数).往往为了加快学习进度,训练的初期直接加载pretrain模型中预先训练好的参数.加载model如下所示: import torchvision.models as models 1.加…
目前在学习pytorch,自己写了一些例子,在这里记录下来一些报错及总结 1. RuntimeError: Expected object of type torch.FloatTensor but found type torch.cuda.FloatTensor for argument #2 'weight' 详细报错信息 Traceback (most recent call last): File , in <module> outputs = net(inputs) File ,…
LeNet 1998年,LeCun提出了第一个真正的卷积神经网络,也是整个神经网络的开山之作,称为LeNet,现在主要指的是LeNet5或LeNet-5,如图1.1所示.它的主要特征是将卷积层和下采样层相结合作为网络的基本机构,如果不计输入层,该模型共7层,包括2个卷积层,2个下采样层,3个全连接层. 图1.1 注:由于在接入全连接层时,要将池化层的输出转换成全连接层需要的维度,因此,必须清晰的知道全连接层前feature map的大小.卷积层与池化层输出的图像大小,其计算如图1.2所示. 图1…
参考:https://github.com/chenyuntc/pytorch-book/tree/v1.0/chapter6-实战指南 希望大家直接到上面的网址去查看代码,下面是本人的笔记 将上面地址的代码下载到本地后进行操作 1.安装依赖 (deeplearning) userdeMacBook-Pro:dogcat- user$ pip install -r requirements.txt ... Successfully built fire ipdb torchnet Install…
https://github.com/chenyuntc/pytorch-book/blob/v1.0/chapter5-常用工具/chapter5.ipynb 希望大家直接到上面的网址去查看代码,下面是本人的笔记 在训练神经网络过程中,需要用到很多工具,其中最重要的三部分是:数据.可视化和GPU加速.本章主要介绍Pytorch在这几方面的工具模块,合理使用这些工具能够极大地提高编码效率. 1.数据处理 PyTorch提供了几个高效便捷的工具,以便使用者进行数据处理或增强等操作,同时可通过并行化…
参考https://github.com/chenyuntc/pytorch-book/tree/v1.0 希望大家直接到上面的网址去查看代码,下面是本人的笔记 本章介绍的nn模块是构建与autograd之上的神经网络模块 除了nn外还会介绍神经网络中常用的工具,比如优化器optim.初始化init等 1.nn.Module torch的核心数据结构是Module,它是一个抽象的概念,既可以表示神经网络中的某个层,也可以表示一个包含很多层的神经网络 在实际使用中,最常见的做法是继承nn.Modu…
加入带洞卷积的resnet结构的构建,以及普通resnet如何通过模块的组合来堆砌深层卷积网络. 第一段代码为deeplab v3+(pytorch版本)中的基本模型改进版resnet的构建过程, 第二段代码为model的全部结构图示,以文字的方式表示,forward过程并未显示其中 import math import torch.nn as nn import torch.utils.model_zoo as model_zoo from modeling.sync_batchnorm.ba…
https://github.com/pytorch/vision/tree/master/torchvision/models 几乎所有的常用预训练模型都在这里面 总结下各种模型的下载地址: 1 Resnet: model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet…