使用 TensorBoard 可视化模型.数据和训练 在 60 Minutes Blitz 中,我们展示了如何加载数据,并把数据送到我们继承 nn.Module 类的模型,在训练数据上训练模型,并在测试集上测试模型.为了看到发生了什么,当模型训练的时候我们打印输出一些统计值获得对模型是否有进展的感觉.我们可以做的比这更好:PyTorch 整合了 TensorBoard,为可视化训练中的神经网络结果的工具.这篇博文说明了它的一些功能,使用可以被 torchvision.datasets 读入 Py…
在60分钟闪电战中,我们像你展示了如何加载数据,通过为我们定义的nn.Module的子类的model提供数据,在训练集上训练模型,在测试集上测试模型.为了了解发生了什么,我们在模型训练时打印了一些统计数据,以观察训练是否正在进行.但是,我们可以做的比这更好:PyTorch和TensorBoard的集成,是一个用来可视化神经网络运行结果的工具.本教程使用Fashion-MNIST数据集说明它的一些功能,该数据集可以使用torchvision.datasets读到Pytorch中. 在本教程中,我们…
写在前面: 上周微调一个文本检测模型seglink,将特征提取层进行冻结,只训练分类回归层,然而查看tensorboard发现里面有histogram显示模型各个参数分布,看了目前这个训练模型参数分布压根就看不懂,很想知道我的预训练模型的参数分布是怎么个情况,训练了一天了,模型的参数分布较预训练的模型参数有啥变化没有,怎么办呢? 利用tf.summary将模型参数分布在tensorboard可视化: 导入需要的库  设置模型文件夹路径 import TensorFlow as tf from t…
""" 执行lda2vec.ipnb中的代码 模型LDA 功能:训练好后模型数据的可视化 """ from lda2vec import preprocess, Corpus import matplotlib.pyplot as plt import numpy as np # %matplotlib inline import pyLDAvis try: import seaborn except: pass # 加载训练好的主题-文档模型,…
数据集下载地址: 链接:https://pan.baidu.com/s/1l1AnBgkAAEhh0vI5_loWKw提取码:2xq4 创建数据集:https://www.cnblogs.com/xiximayou/p/12398285.html 读取数据集:https://www.cnblogs.com/xiximayou/p/12422827.html 进行训练:https://www.cnblogs.com/xiximayou/p/12448300.html 保存模型并继续进行训练:htt…
LUSE: 无监督数据预训练短文本编码模型 1 前言 本博文本应写之前立的Flag:基于加密技术编译一个自己的Python解释器,经过半个多月尝试已经成功,但考虑到安全性问题就不公开了,有兴趣的朋友私聊讨论吧. 从本篇博客开始,本人将转化写作模式,由话痨模式转为极简模式,力求三言两语让各位看的明白. 2 工作简介 受到MOCO和SimCSE的启发, 基于自监督,使用海量无监督数据(nlp_chinese_corpus),预训练了一个专门用于短文本表征的编码器.该编码器在分类任务尤其是短文本相似度…
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .table-bordere…
TensorFlow提供了一个可视化工具TensorBoard,它能够将训练过程中的各种绘制数据进行展示出来,包括标量,图片,音频,计算图,数据分布,直方图等,通过网页来观察模型的结构和训练过程中各个参数的变化. Tensorboard通过一个日志展示系统进行数据可视化,在session运行图的时候,将各类的数据汇总并输出到日志文件中.然后启动Tensorboard服务,Tensorboard读取日志文件,并开启6006端口提供web服务.让用户可以在浏览器中查看数据. 相关的API函数如下;…
在学习深度网络框架的过程中,我们发现一个问题,就是如何输出各层网络参数,用于更好地理解,调试和优化网络?针对这个问题,TensorFlow开发了一个特别有用的可视化工具包:TensorBoard,既可以显示网络结构,又可以显示训练和测试过程中各层参数的变化情况.本博文分为四个部分,第一部分介绍相关函数,第二部分是代码测试,第三部分是运行结果,第四部分介绍相关参考资料. 一. 相关函数 TensorBoard的输入是tensorflow保存summary data的日志文件.日志文件名的形式如:e…
程序1 任务描述: x = 3.0, y = 100.0, 运算公式 x×W+b = y,求 W和b的最优解. 使用tensorflow编程实现: #-*- coding: utf-8 -*-) import tensorflow as tf # 声明占位变量x.y x = tf.placeholder("float",shape=[None,1]) y = tf.placeholder("float",[None,1]) # 声明变量 W = tf.Variabl…