最近我在做Natural Language Generating的项目,接触到了BLEU这个指标,虽然知道它衡量的是机器翻译的效果,也在一些文献的experiment的部分看到过该指标,但我实际上经常会略去阅读实验效果的部分(纯粹感觉不如理论部分激动人心哈哈哈),现在轮到自己做项目了,下定决心要搞懂这个指标到底在干嘛.不足之处还是希望大家能够指正.同时也欢迎大家转载我的这篇blog 原创不易还请注明出处~ 首先是原始论文地址: https://www.aclweb.org/anthology/P…
什么是BLEU? BLEU (Bilingual Evaluation Understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and t…
1,概述 机器翻译中常用的自动评价指标是 $BLEU$ 算法,除了在机器翻译中的应用,在其他的 $seq2seq$ 任务中也会使用,例如对话系统. 2 $BLEU$算法详解 假定人工给出的译文为$reference$,机器翻译的译文为$candidate$. 1)最早的$BLEU$算法 最早的$BLEU$算法是直接统计$cadinate$中的单词有多少个出现在$reference$中,具体的式子是: $BLEU = \frac {出现在reference中的candinate的单词的个数} {c…
BLEU is designed to approximate human judgement at a corpus level, and performs badly if used to evaluate the quality of individual sentences. https://en.wikipedia.org/wiki/BLEU To produce a score for the whole corpus the modified precision scores fo…
◆版权声明:本文出自胖喵~的博客,转载必须注明出处. 转载请注明出处:http://www.cnblogs.com/by-dream/p/7679284.html 前言 近年来,在自然语言研究领域中,评测问题越来越受到广泛的重视,可以说,评测是整个自然语言领域最核心和关键的部分.而机器翻译评价对于机器翻译的研究和发展具有重要意义:机器翻译系统的开发者可以通过评测得知系统存在的问题而不断改进,用户也可以根据评测报告选择满足自己需求的产品,而对于机器翻译的研究人员来说,评测能够给他们的技术发展方向提…
原文连接 https://blog.csdn.net/guolindonggld/article/details/56966200 1. 简介 BLEU(Bilingual Evaluation Understudy),相信大家对这个评价指标的概念已经很熟悉,随便百度谷歌就有相关介绍.原论文为BLEU: a Method for Automatic Evaluation of Machine Translation,IBM出品. 本文通过一个例子详细介绍BLEU是如何计算以及NLTKnltk.a…
◆版权声明:本文出自胖喵~的博客,转载必须注明出处. 转载请注明出处:http://www.cnblogs.com/by-dream/p/7765345.html 上一节介绍了BLEU算的缺陷.NIST(National Institute of standards and Technology)方法是在BLEU方法上的一种改进.最主要的是引入了每个n-gram的信息量(information)的概念.BLEU算法只是单纯的将n-gram的数目加起来,而nist是在得到信息量累加起来再除以整个译…
机器翻译领域常使用BLEU对翻译质量进行测试评测.我们可以先看wiki上对BLEU的定义. BLEU (Bilingual Evaluation Understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspond…
前言 近年来,在自然语言研究领域中,评测问题越来越受到广泛的重视,可以说,评测是整个自然语言领域最核心和关键的部分.而机器翻译评价对于机器翻译的研究和发展具有重要意义:机器翻译系统的开发者可以通过评测得知系统存在的问题而不断改进,用户也可以根据评测报告选择满足自己需求的产品,而对于机器翻译的研究人员来说,评测能够给他们的技术发展方向提供最可靠的依据. ——摘自北京邮电大学信息工程系张剑博士在微软亚洲研究院访问期间完成的一篇论文中的一段话. 早在90年代初,美国国家自然基金委员会和欧盟就资助的国际…
TensorFlow Serving https://tensorflow.github.io/serving/ . 生产环境灵活.高性能机器学习模型服务系统.适合基于实际数据大规模运行,产生多个模型训练过程.可用于开发环境.生产环境. 模型生命周期管理.模型先数据训练,逐步产生初步模型,优化模型.模型多重算法试验,生成模型管理.客户端(Client)向TensorFlow Severing请求模型,TensorFlow Severing返回适当模型给客户端.TensorFlow Serving…