不定方程(Exgcd)】的更多相关文章

#include<cstdio> using namespace std; int x,y; inline int abs(int a){return a>?a:-a;} int exgcd(int a,int b){ if(!b){x=,y=;return a;} int d=exgcd(b,a%b),t=x; x=y,y=t-(a/b)*y; return d; } int main(){ int a,b; scanf("%d%d",&a,&b);…
一道很有价值的题. [解析1]欧几里德算法求乘法逆元,前缀和 [Analysis]O(T n log n). [Sum] ①int运算.假设会超出界,第一个数前要加上(LL)即类型转换. ②gcd不变的欧几里德定理:能够是加.也能够是减. [Code] /************************************************************** Problem: 2186 User: y20070316 Language: C++ Result: Accepte…
模拟又炸了,我死亡 $exgcd$(扩展欧几里德算法)用于求$ax+by=gcd(a,b)$中$x,y$的一组解,它有很多应用,比如解二元不定方程.求逆元等等,这里详细讲解一下$exgcd$的原理. 了解$exgcd$算法前,需要$gcd$算法做铺垫.gcd,又称辗转相除法,用于计算两个整数 $a,b$ 的最大公约数. $gcd$函数的基本性质: $gcd(a,b)=gcd(b,a) $ $gcd(a,b)=gcd(-a,b) $ $gcd(a,b)=gcd(|a|,|b|)$ $gcd(a,b…
贝祖定理:即如果a.b是整数,那么一定存在整数x.y使得ax+by=gcd(a,b).换句话说,如果ax+by=m有解,那么m一定是gcd(a,b)的若干倍.(可以来判断一个这样的式子有没有解)有一个直接的应用就是 如果ax+by=1有解,那么gcd(a,b)=1: int gcd(int a,int b){return b==0?a:gcd(b,a%b);} 然而这并不能告诉我们x,y解是多少. 扩欧 首先我们观察上面的式子发现一定有一个解a*1+b*0=gcd(a,b).(b%a=0) 但是…
这题实际解不定方程:ax+by=c只不过题目要求我们解出的x和y 满足|x|+|y|最小,当|x|+|y|相同时,满足|ax|+|by|最小.首先用扩展欧几里德,很容易得出x和y的解.一开始不妨令a>b,若a<=b,则交换a和b.设d=gcd(a,b),最终的则x=x0+b/d*t,y=y0-a/d*tz=|x|+|y|=|x0+b/d*t|+|y0-a/d*t|实际上就是求z=|a1*t+c1|+|c2-a2*t|在t取何值时最小.(a2>a1)首先由不定方程ax+by=c,a>…
http://poj.org/problem?id=2115 题解:一个变量从A开始加到B,每次加C并mod2^k,问加多少次.转化为不定方程:C*x+2^K*Y=B-A //poj2115 #include<cstdio> #include<cstdlib> #include<cstring> #include<iostream> using namespace std; typedef long long LL; LL bit[]; LL tx,ty;…
题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1031 题目大意:有n块大理石,然后有两种盒子,cost分别为c1,c2,容量分别为n1,n2,问你装完这些大理石所需要的最小花费是多少 思路分析:设最终选择x个第一种盒子,y个第二种盒子 根据题目,有 n1*x+n2*y=n ,让求T=c1*x+c2*y的最小值 解不定方程,容易…
exgcd入门以及同余基础 gcd,欧几里得的智慧结晶,信息竞赛的重要算法,数论的...(编不下去了 讲exgcd之前,我们先普及一下同余的性质: 若,那么 若,,且p1,p2互质, 有了这三个式子,就不用怕在计算时溢出了. 下面我会用与分别表示a与b的最大公约数与最小公倍数. 首先会来学扩欧的同学肯定都会欧几里得算法(即辗转相除法)了吧 而通过观察发现:,先除后乘防溢出. 所以与的代码如下: inline int gcd(int a,int b) {)?a:gcd(b,a%b);} inlin…
方便复制 快速乘/幂 时间复杂度 \(O(\log n)\). ll nmod; //快速乘 ll qmul(ll a,ll b){ ll l=a*(b>>hb)%nmod*(1ll<<hb)%nmod; ll r=a*(b&((1<<hb)-1))%nmod; return (l+r)%nmod; } //快速幂 ll qpow(ll a,ll b){ ll res=1; while(b){ if(b&1)res=res*a%nmod; a=a*a%n…
题目链接: [Noi2018]屠龙勇士 题目大意:有$n$条龙和初始$m$个武器,每个武器有一个攻击力$t_{i}$,每条龙有一个初始血量$a_{i}$和一个回复值$p_{i}$(即只要血量为负数就一直回复$p_{i}$的血量,只有在攻击后会回血),杀死一条龙当且仅当攻击结束后或回复血量之后血量为$0$,杀死一条龙会获得一个新的武器.现在要求对每条龙攻击固定次数$x$求出最小的$x$,使所有龙都能被杀死. 因为每次选择的武器是固定的,所以只要用$multiset$存当前剩下的武器然后每次按题目规…
P2421 [NOI2002]荒岛野人 洞穴数不超过1e6 ---> 枚举 判断每个野人两两之间是否发生冲突:exgcd 假设有$m$个洞穴,某两人(设为1,2)在$t$时刻发生冲突 那么我们可以列出方程 $c_{1}+p_{1}t\equiv c_{2}+p_{2}t (mod\quad m)$ 移项一下:$(p_{1}-p_{2})t\equiv c_{2}-c_{1} (mod\quad m)$ 去掉$(mod m)$,得$(p_{1}-p_{2})t-mx=c_{2}-c_{1} $ 这…
数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p2^{a2}p3^{a3}...pn^{an},b=p1^{b1}p2^{b2}p3^{b3}...pn^{bn}\),那么\(gcd(a,b)=\prod_{i=1}^{n}pi^{min(ai,bi)},lcm(a,b)=\prod_{i=1}^{n}pi^{max(ai,bi)}\)(0和任何…
网上看了半天……还是没把欧几里得算法和扩展欧几里得算法给弄明白…… 然后想了想自己写一篇文章好了…… 参考文献:https://www.cnblogs.com/hadilo/p/5914302.html https://blog.csdn.net/sky_zdk/article/details/71023325 <算法竞赛进阶指南>(李煜东)(我不是来推销的) ps:本文讨论范围均在整数以内 一.欧几里得算法 欧几里得算法,即辗转相除法,简称gcd,用于计算两个数的最大公约数.时间复杂度据说l…
推导过程存在漏洞+exCRT板子没打熟于是期望得分÷实际得分=∞? 题目描述 小 D 最近在网上发现了一款小游戏.游戏的规则如下: 游戏的目标是按照编号 \(1\sim n​\) 顺序杀掉 \(n​\) 条巨龙,每条巨龙拥有一个初始的生命值 \(a_i​\).同时每条巨龙拥有恢复能力,当其使用恢复能力时,它的生命值就会每次增加 \(p_i​\),直至生命值非负.只有在攻击结束后且当生命值恰好为 \(0​\) 时它才会死去. 游戏开始时玩家拥有 \(m\) 把攻击力已知的剑,每次面对巨龙时,玩家只…
本题是极其裸的EXGCD AX+BY+C=0 给你a b c 和x与y的区间范围,问你整数解有几组 作为EXGCD入门,题目比较简单 主要需要考虑区间范围的向上.向下取整,及正负符号的问题 问题是这正负号判断考虑让我WA无数次 我好菜阿 补充:关于使用扩展欧几里德算法解决不定方程的办法 对于不定整数方程pa+qb=c,若 c mod Gcd(p, q)=0,则该方程存在整数解,否则不存在整数解. 上面已经列出找一个整数解的方法,在找到p * a+q * b = Gcd(p, q)的一组解p0,q…
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1407 题意: 有n个野人,野人各自住在第c[i]个山洞中(山洞成环状),每年向前走p[i]个山洞,到这个山洞住下来. 每个野人的寿命为l[i],问至少需要多少个山洞,才能让野人在有生之年永远不住在同一个山洞. 题解: 原本不会拓展欧几里得和同余方程,在这里尽量详细地写一下由这题学到的东西. 我原本是从网上看各类题解然后打的,因为不理解和某些题解上的错误,导致调了很久. 下面写我的题解,如…
从最基础的开始. 1.gcd 这个不用说了吧--\(gcd(a,b) = gcd(b,a\%b)\),这个很显然. 2.exgcd 这玩意可以用来求形如\(ax+by = gcd(a,b)\)的不定方程的一组特解. 首先来证明一下为什么一定是有解的. 因为我们是像上面的gcd一样递归解决问题的,所以当\(b = 0\)时,我们返回a,此时方程必然有一个特解\(x = 1,y = 0\)成立. 我们假设现在已经求出了一组解\(x_1,y_1\),我们要求下一组解\(x_2,y_2\) 有\(ax_…
exgcd解不定方程时候$abs()$不能乱加 Description Input 第1行为一个整数N(1<=N<=15),即野人的数目. 第2行到第N+1每行为三个整数Ci, Pi, Li表示每个野人所住的初始洞穴编号,每年走过的洞穴数及寿命值. (1<=Ci,Pi<=100, 0<=Li<=10^6 ) Output 仅包含一个数M,即最少可能的山洞数.输入数据保证有解,且M不大于10^6. Sample Input 3 1 3 4 2 7 3 3 2 1 Samp…
思路: 把k*M%N=1可以写成一个不定方程,(k*M)%N=(N*x+1)%N,那么就是求k*M-N*x=1,k最小,不定方程我们可以直接利用exgcd,中间还搞错了: //小小地讲一下exgcd球不定方程原理 对于ax+by=gcd(a,b); 我们设一下a>b,在简单直接把b=0时,gcd(a,b)=a.此时,x=1,y=0; 接着,a>b>0,我们这里可以摆两个式子:①:ax1+by1=gcd(a,b);继续,②:bx2+(a mod b)y2=gcd( b , a mod b…
Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的.但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的.为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面. 我们把这…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1). Input 数据的第一行是一个T,表示有T组数据.每组数据有两个数n(0 <= n < 9973)和B(1 <= B <= 10^9). Output 对应每组数据输出(A/B)%9973. Sample…
1.解同余方程: 同余方程可以转化为不定方程,其实就是,这样的问题一般用拓展欧几里德算法求解. LL exgcd(LL a,LL b,LL &x,LL &y){ if(!b){ x=;y=; return a; } LL gcd=exgcd(b,a%b,x,y); LL t=x; x=y; y=t-a/b*x; return gcd; } 2.解同余方程组(任意两个模意义互质)用CRT. LL CRT(){ LL ans=,M=,x,y; ;i<=n;i++) M*=m[i]; ;i…
一.不定方程 要求逆元,首先要知道什么是不定方程. 已知a,b,c,求解x,y,形如ax + by = c 的方程就是不定方程. 不定方程有两种解的情况: 1.无解 2.存在且有无限的解 那么,如何判断解的情况呢? 这时候,只需要拿出gcd就可以了, 若gcd(a,b) | c,则方程存在解,为什么呢 因为我们要使用扩展欧几里得来求不定方程,我们都知道欧几里得是求 ax + by = gcd(a,b) 中的 x,y的,因此如果我们要把c代换成gcd(a,b)的话,c一定是gcd(a,b)的整数倍…
欧几里得算法 又称辗转相除法 迭代求两数 gcd 的做法 由 (a,b) = (a,ka+b) 的性质:gcd(a,b) = gcd(b,a mod b) int gcd(int a,int b){ if(b==) return a; return gcd(b,a%b); } O(logn) 裴蜀定理: 设 (a,b) = d,则对任意整数 x,y,有 d|(ax+by) 成立: 特别地,一定存在 x,y 满足 ax+by = d 等价的表述:不定方程 ax+by = c(a,b,c 为整数)…
最大公约数 更相减损术:\(\gcd(x,y)=\gcd(x,y-x)(x\leq y)\). 证明: 设 \(\gcd(x,y)=k\),则 \(x=kp,y=kq,\gcd(p,q)=1\). 那么 \(\gcd(x,y-x)=\gcd(kp,kq-kp)=k\times\gcd(p,q-p)\). 设 \(\gcd(p,q-p)=r\),则 \(p=ra,q-p=rb\). 那么 \(q=r(a+b)\). 因为 \(\gcd(p,q)=1=\gcd(ra,r(a+b))\). 所以 \(…
Elementary Number Theory - Extended Euclid Algorithm Time Limit : 1 sec, Memory Limit : 65536 KB Japanese version is here Extended Euclid Algorithm Given positive integers a and b, find the integer solution (x, y) to ax+by=gcd(a,b), where gcd(a,b) is…
题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开 输出格式: 输出只有一行,包含一个正整数 x0,即最小正整数解.输入数据保证一定有解. 输入输出样例 输入样例#1: 3 10 输出样例#1: 7 说明 [数据范围] 对于 40%的数据,2 ≤b≤ 1,000: 对于 60%的数据,2 ≤b≤ 50,000,000: 对于 100%的数据,2 ≤a, b≤ 2,000,000,000.…
procedure exgcd(a,b:int64); var t:longint; begin then begin x:=;y:=; exit; end else exgcd(b,a mod b); t:=x;x:=y;y:=t-(a div b)*y; end; function cfny(a:int64):int64; var b:longint; begin b:=zs; exgcd(a,b); cfny:= ((x mod zs)+zs) mod zs; end;…
1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(ll l,ll r,ll &x,ll &y) { if(r==0){x=1;y=0;return l;} else { ll d=exgcd(r,l%r,y,x); y-=l/r*x; return d; } } 3.求a关于m的乘法逆元 ll mod_inverse(ll a,ll m){ l…
4522: [Cqoi2016]密钥破解 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 290  Solved: 148[Submit][Status][Discuss] Description  一种非对称加密算法的密钥生成过程如下: 1.任选两个不同的质数p,q 2.计算N=pq,r=(p−1)(q−1) 3.选取小于r,且与r互质的整数e 4.计算整数d,使得ed≡1KQ/r 5.二元组(N,e)称为公钥,二元组(N,d)称为私钥 当需要加…