求取向量二范数,并求取单位向量(行向量计算) import numpy as np x=np.array([[0, 3, 4], [2, 6, 4]]) y=np.linalg.norm(x, axis=1, keepdims=True) z=x/y x 为需要求解的向量, y为x中行向量的二范数, z为x的行方向的单位向量. np.linalg.norm 顾名思义,linalg=linear+algebra ,norm 则表示范数,首先需要注意的是范数是对向量(或者矩阵)的度量,是一个标量(s…
np.linalg.norm() # linalg = linear(线性) + algebra(代数),   norm表示范数 x_norm = np.linalg.norm(x, ord=None, axis=None, keepdims=False) ①x: 表示矩阵(也可以是一维) ②ord:范数类型 向量的范数: 矩阵的范数: ord=1:列和的最大值 ord=2:|λE-ATA|=0,求特征值,然后求最大特征值得算术平方根 ord=∞:行和的最大值 ord=None:默认情况下,是求…
NumPy是一个开源的Python科学计算库,用于快速处理任意维度的数组. 创建NumPy数组 #创建一维数组 list1 = [1,2,3,4] array1= np.array(list1)#用python列表创建np数组 array1= np.array(range(10))#用python内置range函数创建np数组 array1= np.arange(0,10,2)#numpy方法 .arange创建np数组 #创建多维数组 list2 = [[1,2],[3,4]] array2…
在学习机器学习实教程时,实现KNN算法的代码中用到了numpy的tile函数,因此对该函数进行了一番学习: tile函数位于python模块 numpy.lib.shape_base中,他的功能是重复某个数组.比如tile(A,n),功能是将数组A重复n次,构成一个新的数组 print(tile([0,0],1)) [0 0] print(tile([0,0],2)) [0 0 0 0] print(tile([0, 0], 4)) [0 0 0 0 0 0 0 0] print(tile([0…
Matlab和Python的numpy在维度索引方面的不同点: 1.索引的起始点不同:Matlab起始位置的索引为1,Python为0. 2.索引的括号不同:Matlab中元素可以通过小括号表示索引,Python中用中括号. 3.对数组的默认维数不同:在Matlab中,一个一维数组是一个第二维为1的二维数组.Python中,a=np.arrange(10)产生的是一个一维数组,而a = np.reshape(np.arrange(10), (10, 1))是一个二维数组,有10行1列.a = n…
转载:https://blog.csdn.net/amuchena/article/details/89060798和https://www.runoob.com/python/python-func-sum.html numpy中的sum()函数和python中不太一样:…
a = np.arange(2*4*4) b = a.reshape(1,4,4,2)           #应该这样按反序来理解:最后一个2是一个只有2个元素的向量,最后的4,2代表4×2的矩阵,最后的4×4×2代表立体张量,第一个1代表只有一个这样的张量(即该张量在第四维度只有一个元素). c = a.reshape(2,4,4,1)        #应该这样按反序来理解:最后一个1是只有一个1个元素的向量,最后的4,1代表4×1的矩阵(可降维成一个向量),最后的4×4×1代表立体张量(可降…
0.1准备工作 安装好CentOS7,配置好网络,确保网络畅通. 0.2root授权 首先:当前用户为kaid # vim /etc/sudoers 在root ALL=(ALL) ALL之后添加: kaid ALL=(ALL) NOPASSWD:ALL 表示,用户kaid可以不需要验证密码而执行root的所有操作(为了安全起见,安装后,改回来哦). 0.3安装git $ sudo yum -y install git 0.4 安装vimplus $ git clone https://gith…
1. numpy.reshape  重塑 reshape是一种函数,函数可以重新调整矩阵的行数.列数.维数. B = reshape(A,m,n) 返回一个m*n的矩阵B, B中元素是按列从A中得到的.如果A中元素个数没有m*n个, 则会引发错误.   2.numpy.shape  输入参数:类似数组(比如列表,元组)等,或是数组. 返回:一个整型数字的元组,元组中的每个元素表示相应的数组每一维的长度. 注:只有数组array才可以使用shape和reshape函数.…
转自 https://blog.csdn.net/csdn15698845876/article/details/73380803 这三个函数有些相似性,都是堆叠数组,里面最难理解的应该就是stack()函数了,我查阅了numpy的官方文档,在网上又看了几个大牛的博客,发现他们也只是把numpy文档的内容照搬,看完后还是不能理解,最后经过本人代码分析,算是理解了stack()函数增加维度的含义.以下内容我会用通俗易懂的语言解释,内容可能有点多,耐心看,如果哪里说的不对,欢迎纠正! 1. stac…