bzoj2301-Problem b】的更多相关文章

题面: 传送门 有洛谷就尽量放洛谷链接呗,界面友好一点 思路: 和HDU1695比较像,但是这一回有50000组数据,直接莫比乌斯反演慢慢加的话会T 先解决一个前置问题:怎么处理a,c不是1的情况? 很简单,容斥原理搞之 我们设f(x,y)代表gcd(i,j)==e(1<=i<=x,1<=j<=y)的无序数对(i,j)的个数 那么本题答案相当于f(d,b)-f(c-1,b)-f(a-1,d)+f(a-1,c-1) 再来看反演超时的问题 我们注意到原反演过程中,f(1)==mu(i)…
题意: $\sum\limits_{\begin{array}{*{20}{c}}{a < = x < = b}\\{c < = y < = d}\end{array}} {\gcd (x,y) = = k} $ 解题关键: 现令$f(i)$表示有多少对${(x,y)}$满足 ${\gcd (x,y) =  = d}$,$1 <  = x <  = n,1 <  = y <  = m$ $F(d)$为有多少对${(x,y)}$满足 ${\gcd (x,y)…
[BZOJ2301][HAOI2011]Problem B(莫比乌斯反演) 题面 Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k Output 共n行,每行一个整数表示满足要求的数对(x,y)的个数 Sample Input 2 2 5 1 5 1 1 5 1 5 2 Sample Outp…
http://www.lydsy.com/JudgeOnline/problem.php?id=2301 (题目链接) 题意 给出${a,b,c,d,k}$,${n}$组询问,求$${\sum_{i=a}^{b}\sum_{j=c}^{d} [gcd(i,j)=k]}$$ Solution 莫比乌斯反演,就是一堆公式推啊推. 运用容斥,那么答案就变成了:$${\sum_{i=1}^{b}\sum_{j=1}^{d} [gcd(i,j)=k]-\sum_{i=1}^{b}\sum_{j=1}^{c…
2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit][Status][Discuss] Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k Outp…
http://www.lydsy.com/JudgeOnline/problem.php?id=2301 https://www.luogu.org/problemnew/show/P2522 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. (哇做完上面那道题之后看所有的莫比乌斯反演都好亲切啊) 这题应该是可以采用选数的方法(然而我翻车太厉害了就不写了) 那么我们思考容斥,就一个简单的二维容斥,…
对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d. 我们可以令F[n]=使得n|(x,y)的数对(x,y)个数 这个很容易得到,只需要让x,y中都有n这个因子就好了,也就是[a/n]*[b/n]个数对(向下取整) 然后设题中所要求的为f[n],很容易得知,F[n]=∑f[d](n|d) 莫比乌斯反演可以得到f[n]=∑μ(d/n)F[d](n|d) 这样是O(n),然而数据范围5*10^4显然不能通过 f[n]=∑μ(d/n)[a/d][b/d]…
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2301 题意:多次询问,求有多少对数满足 gcd(x,y)=k, a<=x<=b, c<=y<=d. 对于有下界的区间,容易想到用容斥原理做.然后如果直接用Mobius反演定理做,那么每次询问的复杂度是O(n/k),如果k=1的话,那么总体就是O(n^2)的复杂度了,会TLE.这样用到了分快优化,注意到 n/i ,在连续的k区间内存在,n/i=n/(i+k),因此能用分块优化…
对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000 看这个:http://blog.csdn.net/a_crazy_czy/article/details/50485082 不过有一点点小错误,这里0和1反了. #include<cstdio> #include<algorithm&…
Problem b Time Limit: 50 Sec  Memory Limit: 256 MB[Submit][Status][Discuss] Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k Output 共n行,每行一个整数表示满足要求的数对(x,y)的个数. Sample Inp…