PYTHON 和R的对比】的更多相关文章

为了鼓励新工具的出现,机器学习和数据分析领域似乎已经成了“开源”的天下.Python 和 R 语言都具有健全的生态系统,其中包括了很多开源工具和资源库,从而能够帮助任何水平层级的数据科学家展示其分析工作. 机器学习和数据分析之间的差异有些难以言明,但二者最主要的不同就在于,比起模型的可解释性,机器学习更加强调预测的准确性:而数据分析则更加看重模型的可解释性以及统计推断.Python ,由于更看重预测结果的准确性,使其成为机器学习的一把利器. R ,作为一种以统计推断为导向的编程语言,在数据分析界…
建议:如果只是处理(小)数据的,用R.结果更可靠,速度可以接受,上手方便,多有现成的命令.程序可以用.要自己搞个算法.处理大数据.计算量大的,用python.开发效率高,一切尽在掌握. 概述 在真实的数据科学世界里,我们会有两个极端,一个是业务,一个是工程.偏向业务的数据科学被称为数据分析(Data Analysis),也就是A型数据科学.偏向工程的数据科学被称为数据构建(Data Building),也就是B型数据科学. 从工具上来看,按由业务到工程的顺序,这个两条是:EXCEL >> R…
一.Python与R功能对比分析 1.python与R相比速度要快.python可以直接处理上G的数据:R不行,R分析数据时需要先通过数据库把大数据转化为小数据(通过groupby)才能交给R做分析,因此R不可能直接分析行为详单,只能分析统计结果.Python=R+SQL/Hive 2.如果是统计理论研究.前沿科学研究,R比python更胜一筹.R的优势在于有包罗万象的统计函数可以调用,特别是在时间序列分析方面(主要用在金融分析与趋势预测)无论是经典还是前沿的方法都有相应的包直接使用:相比pyt…
网络上经常看到有人问数据分析是学习Python好还是R语言好,还有一些争论Python好还是R好的文章.每次看到这样的文章我都会想到李舰和肖凯的<数据科学中的R语言>,书中一直强调,工具不分好坏,重要的是解决问题的思路,就算是简单的excel,也能应付数据分析中的大部分问题.再者Python和R本来就没有什么好对比的,一门是计算机工程语言,一门是统计语言,只有将两者结合起来,才能发挥更大的威力,不是吗,对于数据分析的人来说,难道不是两样都要掌握的吗? rpy2是Python调用R程序的模块,旨…
在当下,人工智能的浪潮席卷而来.从AlphaGo.无人驾驶技术.人脸识别.语音对话,到商城推荐系统,金融业的风控,量化运营.用户洞察.企业征信.智能投顾等,人工智能的应用广泛渗透到各行各业,也让数据科学家们供不应求.Python和R作为机器学习的主流语言,受到了越来越多的关注.数据学习领域的新兵们经常不清楚如何在二者之间做出抉择,本文就语言特性与使用场景为大家对比剖析. 一.Python和R的概念与特性 Python是一种面向对象.解释型免费开源高级语言.它功能强大,有活跃的社区支持和各式各样的…
上一篇中我们详细介绍推导了主成分分析法的原理,并基于Python通过自编函数实现了挑选主成分的过程,而在Python与R中都有比较成熟的主成分分析函数,本篇我们就对这些方法进行介绍: R 在R的基础函数中就有主成分分析法的实现函数princomp(),其主要参数如下: data:要进行主成分分析的目标数据集,数据框形式,行代表样本,列代表变量 cor:逻辑型变量,控制是否使用相关系数进行主成分分析 scores:逻辑型变量,控制是否计算每个主成分的得分 我们使用了R中自带的数据集USJudgeR…
如果大家已经熟悉python和R的模块/包载入方式,那下面的表查找起来相对方便.python在下表中以模块.的方式引用,部分模块并非原生模块,请使用 pip install * 安装:同理,为了方便索引,R中也以::表示了函数以及函数所在包的名字,如果不含::表示为R的默认包中就有,如含::,请使用 install.packages("*") 安装. 连接器与io 数据库 类别 Python R MySQL mysql-connector-python(官方) RMySQL Oracl…
spark-submit 报错:must specify resource 取消关注 | 1 ... 我的submit.sh内容: /bin/spark-submit \ --class abc.package.manclass \ --master spark:10.30.40.50:7077 \ --executor-memory 2g /home/abc/abc.jar 然后报错,Error : Must specify a primary resource (JAR or python…
概述 和那些数据科学比赛不同,在真实的数据科学中,我们可能更多的时间不是在做算法的开发,而是对需求的定义和数据的治理.所以,如何更好的结合现实业务,让数据真正产生价值成了一个更有意义的话题. 数据科学项目的完整流程通常是这样的五步骤: 需求定义=>数据获取=>数据治理=>数据分析=>数据可视化 一.需求定义 需求定义是数据科学项目和数据科学比赛的最大不同之处,在真实情景下,我们往往对目标函数.自变量.约束条件都并不清晰.需要通过访谈.论文.文档等等形式对问题进行系统地分析,将实际问…
原文:Simple Tutorial on SVM and Parameter Tuning in Python and R 介绍 数据在机器学习中是重要的一种任务,支持向量机(SVM)在模式分类和非线性回归问题中有着广泛的应用. SVM最开始是由N. Vapnik and Alexey Ya. Chervonenkis 在1963年提出.从那时候开始,各种支持向量机被成功用于解决各种现实问题,比如文本聚类,图像分类,生物信息学(蛋白质分类,爱长分类),手写字符识别等等. 内容 1. 什么是支持…
python 与 R 是当今数据分析的两大主流语言.作为一个统计系的学生,我最早接触的是R,后来才接触的python.python是通用编程语言,科学计算.数据分析是其重要的组成部分,但并非全部:而R则更偏重于统计分析,毕竟R是统计学家发明的,本身就是为统计而生.python的优势在于其全能性,几乎所有的领域都有python的身影,而R则在统计及其相关领域非常专业.二者各有优势.那么这么好的两个东西,能不能结合到一起呢?答案是肯定的.要想实现这种功能,一般必须要提供相应的调用接口.rpy2这个第…
转自:http://bbs.pinggu.org/thread-3078817-1-1.html 有人说Python和R的区别是显而易见的,因为R是针对统计的,python是给程序员设计的,其实这话对Python多多少少有些不公平.2012年的时候我们说R是学术界的主流,但是现在Python正在慢慢取代R在学术界的地位.不知道是不是因为大数据时代的到来. Python与R相比速度要快.Python可以直接处理上G的数据:R不行,R分析数据时需要先通过数据库把大数据转化为小数据(通过groupby…
一门课的课后题答案,在这里备份一下: 面向对象程序设计语言 –  比较分析C++.Java.Python.R语言的面向对象特征,这些特征如何实现的?有什么相同点? C++ 语言的面向对象特征: 对象模型:封装 (1)  访问控制机制: C++提供完善的访问控制机制,分别是: public,protected和private. private, public, protected 访问标号的访问范围 public 可访问 1.该类中的函数 : 2.子类的函数: 3.其友元函数访问:4.该类的对象访…
本文由 伯乐在线 - Agatha 翻译,唐尤华 校稿.未经许可,禁止转载!英文出处:SUNIL RAY.欢迎加入翻译组. 前言 谷歌董事长施密特曾说过:虽然谷歌的无人驾驶汽车和机器人受到了许多媒体关注,但是这家公司真正的未来在于机器学习,一种让计算机更聪明.更个性化的技术. 也许我们生活在人类历史上最关键的时期:从使用大型计算机,到个人电脑,再到现在的云计算.关键的不是过去发生了什么,而是将来会有什么发生. 工具和技术的民主化,让像我这样的人对这个时期兴奋不已.计算的蓬勃发展也是一样.如今,作…
一.简介 KNN(k-nearst neighbors,KNN)作为机器学习算法中的一种非常基本的算法,也正是因为其原理简单,被广泛应用于电影/音乐推荐等方面,即有些时候我们很难去建立确切的模型来描述几种类别的具体表征特点,就可以利用天然的临近关系来进行分类: 二.原理 KNN算法主要用于分类任务中,用于基于新样本与已有样本的距离来为其赋以所属的类别,即使用一个新样本k个近邻的信息来对该无标记的样本进行分类,k是KNN中最基本的参数,表示任意数目的近邻,在k确定后,KNN算法还依赖于一个带标注的…
作为机器学习中可解释性非常好的一种算法,决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法.由于这种决策分支画成图形很像一棵树的枝干,故称决策树.在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系. 一.初识决策树 决策树是一种树形结构,一般的,一棵决策树包含一个根结点,若干个内部结点和若干个叶结点: 叶结点:树的一个方向的…
之前数篇博客我们比较了几种具有代表性的聚类算法,但现实工作中,最多的问题是分类与定性预测,即通过基于已标注类型的数据的各显著特征值,通过大量样本训练出的模型,来对新出现的样本进行分类,这也是机器学习中最多的问题,而本文便要介绍分类算法中比较古老的线性判别分析: 线性判别 最早提出合理的判别分析法者是R.A.Fisher(1936),Fisher提出将线性判别函数用于花卉分类上,将花卉的各种特征利用线性组合方法变成单变量值,即将高维数据利用线性判别函数进行线性变化投影到一条直线上,再利用单值比较方…
我们之前经常提起的K-means算法虽然比较经典,但其有不少的局限,为了改变K-means对异常值的敏感情况,我们介绍了K-medoids算法,而为了解决K-means只能处理数值型数据的情况,本篇便对K-means的变种算法——K-modes进行简介及Python.R的实现: K-modes是数据挖掘中针对分类属性型数据进行聚类采用的方法,其算法思想比较简单,时间复杂度也比K-means.K-medoids低,大致思想如下: 假设有N个样本,共有M个属性,均为离散的,对于聚类数目标K: ste…
kmeans法(K均值法)是麦奎因提出的,这种算法的基本思想是将每一个样本分配给最靠近中心(均值)的类中,具体的算法至少包括以下三个步骤: 1.将所有的样品分成k个初始类: 2.通过欧氏距离将某个样品划入离中心最近的类中,并对获得样品与失去样品的类重新计算中心坐标: 3.重复步骤2,直到所有的样品都不能在分类为止 kmeans法与系统聚类法一样,都是以距离的远近亲疏为标准进行聚类的.但是两者的不同之处也很明显:系统聚类对不同的类数产生一系列的聚类结果,而K均值法只能产生指定类数的聚类结果.具体类…
上一篇笔者以自己编写代码的方式实现了重心法下的系统聚类(又称层次聚类)算法,通过与Scipy和R中各自自带的系统聚类方法进行比较,显然这些权威的快捷方法更为高效,那么本篇就系统地介绍一下Python与R各自的系统聚类算法: Python cluster是Scipy中专门用来做聚类的包,其中包括cluster.vq矢量量化包,里面封装了k-means方法,还包括cluster.hierarchy,里面封装了层次聚类和凝聚聚类的方法,本文只介绍后者中的层级聚类方法,即系统聚类方法,先从一个简单的小例…
聚类分析是数据挖掘方法中应用非常广泛的一项,而聚类分析根据其大体方法的不同又分为系统聚类和快速聚类,其中系统聚类的优点是可以很直观的得到聚类数不同时具体类中包括了哪些样本,而Python和R中都有直接用来聚类分析的函数,但是要想掌握一种方法就得深刻地理解它的思想,因此自己从最底层开始编写代码来实现这个过程是最好的学习方法,所以本篇前半段是笔者自己写的代码,如有不细致的地方,望指出. 一.仅使用numpy包进行系统聚类的实现: '''以重心法为距离选择方法搭建的系统聚类算法原型''' # @Fef…
在数据分析的过程中,外部数据的导入和数据的导出是非常关键的部分,而Python和R在这方面大同小异,且针对不同的包或模块,对应着不同的函数来完成这部分功能: Python 1.TXT文件 导入: 以某证券软件导出的txt格式股票数据为例: 方式1: with open(r'C:\Users\windows\Desktop\test\input\SH#600216.txt','r') as s: data_raw = s.readlines() data_raw 可以看到,通过readlines(…
自编函数是几乎每一种编程语言的基础功能,有些时候我们需要解决的问题可能没有完全一致的包中的函数来进行解决,这个时候自编函数就成了一样利器,而Python与R在这方面也有着一定的差别,下面举例说明: Python #一个例子def gold(n=1000): x = [1,1] for i in range(n): x.append(x[-1]+x[-2]) print('黄金分割比的近似值:'+str(x[-2]/x[-1])) gold(10000) 黄金分割比的近似值:0.618033988…
随机数的使用是很多算法的关键步骤,例如蒙特卡洛法.遗传算法中的轮盘赌法的过程,因此对于任意一种语言,掌握其各类型随机数生成的方法至关重要,Python与R在随机数底层生成上都依靠梅森旋转(twister)来生成高质量的随机数,但在语法上存在着很多异同点. Python numpy中的random模块 from numpy import random ?random Type: module String form: <module 'numpy.random' from 'D:\\anacond…
循环是任何一种编程语言的基本设置,是进行批量操作的基础,而条件语句是进行分支运算的基础,Python与R有着各自不同的循环语句与条件语句语法,也存在着一些相同的地方. Python 1.for循环 '''通过for循环对列表进行遍历''' list1 = [i for i in range(10)] for i in range(10): print(list1[i]) 0 1 2 3 4 5 6 7 8 9 '''通过for循环对集合进行遍历''' set1 = set([i for i in…
用蒙特卡洛方法算pi-基于python和R语言 最近follow了MOOC上一门python课,开始学Python.同时,买来了概率论与数理统计,准备自学一下统计.(因为被鄙视过不是统计专业却想搞数据分析) 有趣的是书里面有一块讲蒲丰投针计算Pi,这是一种随机模拟法,也就是蒙特卡洛法.蒲丰投针之于我太难,暂时没想到怎么用计算机模拟这一过程. python课中,老师也提到用随机模拟法,也就是蒙特卡洛法(MonteCarlo),用计算机模拟几千次实验,计算pi的近似值.好巧. 就拿python课中的…
转自:  原文标题:Build High Performance Time Series Models using Auto ARIMA in Python and R 作者:AISHWARYA SINGH:翻译:陈之炎:校对:丁楠雅 原文链接: https://www.analyticsvidhya.com/blog/2018/08/auto-arima-time-series-modeling-python-r/ 简介 想象你现在有一个任务:根据已有的历史数据,预测下一代iPhone的价格,…
预测分析建模 Python与R语言实现 目录 前言 第1章 分析与数据科学1第2章 广告与促销10第3章 偏好与选择24第4章 购物篮分析31第5章 经济数据分析42第6章 运营管理56第7章 文本分析72第8章 情感分析93第9章 体育分析132第10章 空间数据分析146第11章 品牌和价格165第12章 大型的小数字游戏188附录A 数据科学方法191附录B 测量方法204附录C 案例研究212附录D 编码和脚本226参考文献259 下载地址:https://pan.baidu.com/s…
在Python调用R,最常见的方式是使用rpy2模块. 简介 模块 The package is made of several sub-packages or modules: rpy2.rinterface —— Low-level interface to R, when speed and flexibility matter most. Close to R’s C-level API. rpy2.robjects —— High-level interface, when ease-…
Python中%r和%s的详解及区别_python_脚本之家 https://www.jb51.net/article/108589.htm…