【洛谷】P1247 取火柴游戏(Nim)】的更多相关文章

题目:https://www.luogu.org/problemnew/show/P1247 可以知道必败局面为n[1]^n[2]^...^n[k]=x=0: 而若x不等于0,则一定可以取一次使其变为0,所以此时为必胜: 取火柴数即为n[i]^x,取掉后异或和变为0: 因为取火柴数为正数,所以要n[i]>n[i]^x. 代码如下: #include<iostream> #include<cstdio> using namespace std; ],x; int main()…
经典NIM游戏. 取XOR和即可. 注意输出方案时,找到大于异或和sum的,变为a[i] ^ sum即可. #include <cstdio> ; int a[N]; int main() { ; scanf("%d", &n); ; i <= n; i++) { scanf("%d", &a[i]); sum ^= a[i]; } if(!sum) { printf("lose"); ; } ; i <=…
题目传送门 暴力 \((\)由于我这样的初中蒟蒻不\((bu)\)喜\((hui)\)欢\((xie)\)数学证明,所以题解中的证明全是其他大佬的题解已经多次证明过的,这里就不再啰嗦了.\()\) ------逗比与正经的分界线→_→------ 思路: 就是先判断是否先手必胜,如果不是,就直接输出\(lose\),如果是的话,一根一根的取,就能得到正解啦!注释详见代码. 优化前的90分TlE代码: #include<iostream> #include<cstdio> #incl…
好久之前看的sg函数了 好像就记住一个nim博弈qwq 第一次啊看的时候很迷,现在感觉可以了qwq 首先我们来看一个其他的游戏.(以下游戏只有两个人参与,且足够聪明) 两个人在一张圆形的桌子上放等大的盘子,最后一个无法放盘子的人输掉比赛 很显然,先手必胜. 为什么? 第一个人可以将盘子放在桌子的中心. 然后只要第二个人可以放置盘子,我们就在其中心对称的位置上放盘子. 如此,只要后手可以放,我先手就一定能放 可以看出,有时候如果处于先手必胜的状态时,模仿对手的策略不妨是个好方法.这可以保证如果游戏…
洛谷P1288 取数游戏II 先手必胜的条件需要满足如下中至少 \(1\) 条: 从初始位置向左走到第一个 \(0\) 的位置,经过边的数目为偶数(包含 \(0\) 这条边). 从初始位置向右走到第一个 \(0\) 的位置,经过边的数目为偶数(包含 \(0\) 这条边). 否则先手必败. #include<stdio.h> #include<string.h> using namespace std; const int maxn = 25; int a[maxn], n, ans…
题目链接:https://www.luogu.org/problemnew/show/P1247 题意:nim取石子的题意,多了一个判断先手赢的话,输出先手第一把怎么拿,以及拿完之后每堆还剩多少. 题解:异或和为0直接lose.不为0的话,看res xor a[i]的值如果小于a[i]说明可以取该堆,也就是取a[i] - (res xor a[i])这么多.剩余的就是res xor a[i]. 证明..洛谷题解的大佬写的挺好的..QAQ 代码: #include <iostream> #inc…
题目描述 输入k及k个整数n1,n2,-,nk,表示有k堆火柴棒,第i堆火柴棒的根数为ni:接着便是你和计算机取火柴棒的对弈游戏.取的规则如下:每次可以从一堆中取走若干根火柴,也可以一堆全部取走,但不允许跨堆取,也不允许不取. 谁取走最后一根火柴为胜利者. 例如:k=2,n1=n2=2,A代表你,P代表计算机,若决定A先取: A:(2,2)→(1,2) {从一堆中取一根} P:(1,2)→(1,1) {从另一堆中取一根} A:(1,1)→(1,0) P:(1,0)→ (0,0) {P胜利} 如果…
P1123 取数游戏 题目描述 一个N×M的由非负整数构成的数字矩阵,你需要在其中取出若干个数字,使得取出的任意两个数字不相邻(若一个数字在另外一个数字相邻8个格子中的一个即认为这两个数字相邻),求取出数字和最大是多少. 输入输出格式 输入格式: 输入第1行有一个正整数T,表示了有T组数据. 对于每一组数据,第1行有两个正整数N和M,表示了数字矩阵为N行M列. 接下来N行,每行M个非负整数,描述了这个数字矩阵. 输出格式: 输出包含T行,每行一个非负整数,输出所求得的答案. 输入输出样例 输入样…
P2252 取石子游戏 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后把石子全部取完者为胜者.现在给出初始的两堆石子的数目,你先取,假设双方都采取最好的策略,问最后你是胜者还是败者. 这题比较狗☞,要开$long$$long$ 所谓的威佐夫博弈,貌似应用的只是他的结论,两个绝绝顶聪明的人,在玩一个灰常高大上的游戏——取石子, 即给你两堆石子,两个人轮流取,可以取走其中…
题目 传送门:QWQ 分析 蒟蒻根本不会博弈论..... 只知道异或和判断Nim游戏.. 不是很懂输出的选择,所以发一篇博客以待复习 代码 #include <bits/stdc++.h> using namespace std; ; int a[maxn], n; int main(){ scanf("%d",&n); ;i<=n;i++) scanf("%d",&a[i]); ]; ;i<=n;i++) k^=a[i];…