使用http://www.cnblogs.com/573177885qq/p/5804863.html中的图片进行训练和测试. 整个流程差不多,fine-tune命令: ./build/tools/caffe train -solver examples/money_test/fine_tune/solver.prototxt -weights models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel 因为是用别人训练好的…
Caffe学习系列(12):训练和测试自己的图片   学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去imagenet的官网http://www.image-net.org/download-images,下载imagenet图片来训练.但是我没有下载,一个原因是注册账号的时候,验证码始终出不来(听说是google网站的验证码,而我是上不了goo…
之前的教程我们说了如何使用caffe训练自己的模型,下面我们来说一下如何fine tune. 所谓fine tune就是用别人训练好的模型,加上我们自己的数据,来训练新的模型.fine tune相当于使用别人的模型的前几层,来提取浅层特征,然后在最后再落入我们自己的分类中. fine tune的好处在于不用完全重新训练模型,从而提高效率,因为一般新训练模型准确率都会从很低的值开始慢慢上升,但是fine tune能够让我们在比较少的迭代次数之后得到一个比较好的效果.在数据量不是很大的情况下,fin…
学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去imagenet的官网http://www.image-net.org/download-images,下载imagenet图片来训练.但是我没有下载,一个原因是注册账号的时候,验证码始终出不来(听说是google网站的验证码,而我是上不了google的).第二个原因是数据太大了... 我去网上找了…
学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去imagenet的官网http://www.image-net.org/download-images,下载imagenet图片来训练.但是我没有下载,一个原因是注册账号的时候,验证码始终出不来(听说是google网站的验证码,而我是上不了google的).第二个原因是数据太大了... 我去网上找了…
caffe程序是由c++语言写的,本身是不带数据可视化功能的.只能借助其它的库或接口,如opencv, python或matlab.大部分人使用python接口来进行可视化,因为python出了个比较强大的东西:ipython notebook, 现在的最新版本改名叫jupyter notebook,它能将python代码搬到浏览器上去执行,以富文本方式显示,使得整个工作可以以笔记的形式展现.存储,对于交互编程.学习非常方便. python环境不能单独配置,必须要先编译好caffe,才能编译py…
学习列表: Google protocol buffer在windows下的编译 caffe windows 学习第一步:编译和安装(vs2012+win 64) caffe windows学习:第一个测试程序 Caffe学习系列(1):安装配置ubuntu14.04+cuda7.5+caffe+cudnn Caffe学习系列(2):数据层及参数 Caffe学习系列(3):视觉层(Vision Layers)及参数 Caffe学习系列(4):激活层(Activiation Layers)及参数…
caffe团队用imagenet图片进行训练,迭代30多万次,训练出来一个model.这个model将图片分为1000类,应该是目前为止最好的图片分类model了. 假设我现在有一些自己的图片想进行分类,但样本量太小,可能只有几百张,而一般深度学习都要求样本量在1万以上,因此训练出来的model精度太低,根本用不上,那怎么办呢? 那就用caffe团队提供给我们的model吧. 因为训练好的model里面存放的就是一些参数,因此我们实际上就是把别人预先训练好的参数,拿来作为我们的初始化参数,而不需…
上接:Caffe学习系列(21):caffe图形化操作工具digits的安装与运行 经过前面的操作,我们就把数据准备好了. 一.训练一个model 右击右边Models模块的” Images" 按钮 ,选择“classification" 在打开页面右下角可以看到,系统提供了一个caffe model,分别为LeNet, AlexNet, GoogLeNet, 如果使用这三个模型,则所有参数都已经设置好了,就不用再设置了. 在下面,系统为我们列举出了本机所带的显卡,我们可以选择其中一块…
经过前面一系列的学习,我们基本上学会了如何在linux下运行caffe程序,也学会了如何用python接口进行数据及参数的可视化. 如果还没有学会的,请自行细细阅读: caffe学习系列:http://www.cnblogs.com/denny402/tag/caffe/ 也许有人会觉得比较复杂.确实,对于一个使用惯了windows视窗操作的用户来说,各种命令就要了人命,甚至会非常抵触命令操作.没有学过python,要自己去用python编程实现可视化,也是非常头痛的事情.幸好现在有了nvidi…
所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision Layers)的参数,视觉层包括Convolution, Pooling, Local Response Normalization (LRN), im2col等层. 1.Convolution层: 就是卷积层,是卷积神经网络(CNN)的核心层. 层类型:Convolution lr_mult: 学习率…
所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision Layers)的参数,视觉层包括Convolution, Pooling, Local Response Normalization (LRN), im2col等层. 1.Convolution层: 就是卷积层,是卷积神经网络(CNN)的核心层. 层类型:Convolution lr_mult: 学习率…
Caffe学习系列——工具篇:神经网络模型结构可视化 在Caffe中,目前有两种可视化prototxt格式网络结构的方法: 使用Netscope在线可视化 使用Caffe提供的draw_net.py 本文将就这两种方法加以介绍 1. Netscope:支持Caffe的神经网络结构在线可视化工具 Netscope是个支持prototxt格式描述的神经网络结构的在线可视工具,网址:  http://ethereon.github.io/netscope/quickstart.html  它可以用来可…
通过前面的学习,我们已经能够正常训练各种数据了.设置好solver.prototxt后,我们可以把训练好的模型保存起来,如lenet_iter_10000.caffemodel. 训练多少次就自动保存一下,这个是通过snapshot进行设置的,保存文件的路径及文件名前缀是由snapshot_prefix来设定的.这个文件里面存放的就是各层的参数,即net.params,里面没有数据(net.blobs).顺带还生成了一个相应的solverstate文件,这个和caffemodel差不多,但它多了…
cifar10的各层数据和参数可视化 .caret,.dropup>.btn>.caret{border-top-color:#000!important}.label{border:1px solid #000}.table{border-collapse:collapse!important}.table td,.table th{background-color:#fff!important}.table-bordered td,.table-bordered th{border:1px…
本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accuracy层,reshape层和dropout层及其它们的参数配置. 1.softmax-loss softmax-loss层和softmax层计算大致是相同的.softmax是一个分类器,计算的是类别的概率(Likelihood),是Logistic Regression 的一种推广.Logistic Regression 只能用于二分类,而softmax可以用于多分类. softmax与softm…
本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accuracy层,reshape层和dropout层及其它们的参数配置. 1.softmax-loss softmax-loss层和softmax层计算大致是相同的.softmax是一个分类器,计算的是类别的概率(Likelihood),是Logistic Regression 的一种推广.Logistic Regression 只能用于二分类,而softmax可以用于多分类. softmax与softm…
前言: 本文章记录了我将自己的数据集处理并训练的流程,帮助一些刚入门的学习者,也记录自己的成长,万事起于忽微,量变引起质变. 正文: 一.流程 1)准备数据集  2)数据转换为lmdb格式  3)计算均值并保存(非必需) 4)创建模型并编写配置文件 5)训练和测试 二.实施 (一)准备数据集 在深度学习中,数据集准备往往是最难的事情,因为数据涉及隐私.商业等各方面,获取难度很大,不过有很多科研机构公布了供学习使用的数据集,我们可以在网上下载.还有一种获取的途径是论文,查阅国内外相关的论文,看他们…
caffe程序自带有一张小猫图片,存放路径为caffe根目录下的 examples/images/cat.jpg, 如果我们想用一个训练好的caffemodel来对这张图片进行分类,那该怎么办呢? 如果不用这张小猫图片,换一张别的图片,又该怎么办呢?如果学会了小猫图片的分类,那么换成其它图片,程序实际上是一样的. 开发caffe的贾大牛团队,利用imagenet图片和caffenet模型训练好了一个caffemodel,  供大家下载.要进行图片的分类,这个caffemodel是最好不过的了.所…
参考:http://www.cnblogs.com/denny402/p/5083300.html 上述主要介绍的是从自己的原始图片转为lmdb数据,再到训练.测试的整个流程(另外可参考薛开宇的笔记). 用的是自带的caffenet(看了下结构,典型的CNN),因为没有GPU,整个过程实在是太慢了,因此我将其改为二分类,只留3,4两类训练测试 训练时两类各80张,共160张:测试时两类各20张,共40张. 首先看下solver.prototxt配置文件中各参数的含义 net: "examples…
solver算是caffe的核心的核心,它协调着整个模型的运作.caffe程序运行必带的一个参数就是solver配置文件.运行代码一般为 # caffe train --solver=*_slover.prototxt 在Deep Learning中,往往loss function是非凸的,没有解析解,我们需要通过优化方法来求解.solver的主要作用就是交替调用前向(forward)算法和后向(backward)算法来更新参数,从而最小化loss,实际上就是一种迭代的优化算法. 到目前的版本,…
如同前几篇的可视化,这里采用的也是jupyter notebook来进行曲线绘制. // In [1]: #加载必要的库 import numpy as np import matplotlib.pyplot as plt %matplotlib inline import sys,os,caffe #设置当前目录 caffe_root = '/home/bnu/caffe/' sys.path.insert(0, caffe_root + 'python') os.chdir(caffe_ro…
为了程序的简洁,在caffe中是不带练习数据的,因此需要自己去下载.但在caffe根目录下的data文件夹里,作者已经为我们编写好了下载数据的脚本文件,我们只需要联网,运行这些脚本文件就行了. 注意:在caffe中运行所有程序,都必须在根目录下进行,否则会出错 1.mnist实例 mnist是一个手写数字库,由DL大牛Yan LeCun进行维护.mnist最初用于支票上的手写数字识别, 现在成了DL的入门练习库.征对mnist识别的专门模型是Lenet,算是最早的cnn模型了. mnist数据训…
上文提到,到目前为止,caffe总共提供了六种优化方法: Stochastic Gradient Descent (type: "SGD"), AdaDelta (type: "AdaDelta"), Adaptive Gradient (type: "AdaGrad"), Adam (type: "Adam"), Nesterov’s Accelerated Gradient (type: "Nesterov&qu…
前言: 正文: 1.安装必要依赖包: sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler sudo apt-get install --no-install-recommends libboost-all-dev sudo apt-get install libatlas-base-dev sudo apt-get…
前言: 通过检索论文.书籍.博客,继续学习Caffe,千里之行始于足下,继续努力.将自己学到的一些东西记录下来,方便日后的整理. 正文: 1.代码结构梳理 在终端下运行如下命令,可以查看caffe代码结构,我将其梳理了一下: root@ygh:/home/ygh/caffe# tree -d . ├── build -> .build_release //编译结果存放处,子目录结构与主目录类似 ├── cmake //使用CMake编译时会用到 │   ├── External │   ├──…
为了程序的简洁,在caffe中是不带练习数据的,因此需要自己去下载.但在caffe根目录下的data文件夹里,作者已经为我们编写好了下载数据的脚本文件,我们只需要联网,运行这些脚本文件就行了. 注意:在caffe中运行所有程序,都必须在根目录下进行,否则会出错 1.mnist实例 mnist是一个手写数字库,由DL大牛Yan LeCun进行维护.mnist最初用于支票上的手写数字识别, 现在成了DL的入门练习库.征对mnist识别的专门模型是Lenet,算是最早的cnn模型了. mnist数据训…
要运行caffe,需要先创建一个模型(model),如比较常用的Lenet,Alex等, 而一个模型由多个屋(layer)构成,每一屋又由许多参数组成.所有的参数都定义在caffe.proto这个文件中.要熟练使用caffe,最重要的就是学会配置文件(prototxt)的编写. 层有很多种类型,比如Data,Convolution,Pooling等,层之间的数据流动是以Blobs的方式进行. 今天我们就先介绍一下数据层. 数据层是每个模型的最底层,是模型的入口,不仅提供数据的输入,也提供数据从B…
如何在Caffe中增加一层新的Layer呢?主要分为四步: (1)在./src/caffe/proto/caffe.proto 中增加对应layer的paramter message: (2)在./include/caffe/***layers.hpp中增加该layer的类的声明,***表示有common_layers.hpp, data_layers.hpp, neuron_layers.hpp, vision_layers.hpp 和loss_layers.hpp等: (3)在./src/c…
在某社区看到的回答,觉得不错就转过来了:http://caffecn.cn/?/question/123 Caffe从四个层次来理解:Blob,Layer,Net,Solver. 1.Blob Caffe的基本数据结构,用四维矩阵Batch*Channel*Height*Width表示,存储了包括神经元的 激活值.参数.以及相应的梯度(dW,db).其中包含有cpu_data.gpu_data.cpu_diff.gpu_diff. mutable_cpu_data.mutable_gpu_dat…