管道 #创建管道的类: Pipe([duplex]):在进程之间创建一条管道,并返回元组(conn1,conn2),其中conn1,conn2表示管道两端的连接对象,强调一点:必须在产生Process对象之前产生管道 #参数介绍: dumplex:默认管道是全双工的,如果将duplex设置成False,conn1只能用于接收,conn2只能用于发送. #主要方法: conn1.recv():接收conn2.send(obj)发送的对象.如果没有消息可接收,recv方法会一直阻塞.如果连接的另外一…
目录 进程池线程池的使用***** 进程池/线程池的创建和提交回调 验证复用池子里的线程或进程 异步回调机制 通过闭包给回调函数添加额外参数(扩展) 协程*** 概念回顾(协程这里再理一下) 如何实现协程 生成器的yield 可以实现保存状态(行不通) gevent模块实现 利用gevent在单线程下实现并发(协程) I/O 模型(只放了几张图) 阻塞I/O模型 非阻塞I/O模型 多路复用I/O模型 信号驱动I/O模型 异步I/O模型 进程池线程池的使用***** 无论是开线程还是开进程都会消耗…
1.管道(了解) Pipe(): 在进程之间建立一条通道,并返回元组(conn1,conn2),其中conn1,conn2表示管道两端的连接对象,强调一点:必须在产生Process对象之前产生管道. from multiprocessing import Process,Pipe conn1,conn2 = Pipe()  结构 主要方法: conn1.recv():接受conn2.send(obj)发送的对象.如果没有消息可接受, recv方法会一直阻塞.如果连接的另一端已经关闭,那么recv…
Python中的进程池与线程池 引入进程池与线程池 使用ProcessPoolExecutor进程池,使用ThreadPoolExecutor 使用shutdown 使用submit同步调用 使用submit异步调用 异步+回调函数 并发实现套接字通信 引入进程池 在学习线程池之前,我们先看一个例子 1 # from multiprocessing import Process 2 # import time 3 # 4 # def task(name): 5 # print('name',na…
Python并发编程05 /死锁现象.递归锁.信号量.GIL锁.计算密集型/IO密集型效率验证.进程池/线程池 目录 Python并发编程05 /死锁现象.递归锁.信号量.GIL锁.计算密集型/IO密集型效率验证.进程池/线程池 1. 死锁现象 2. 递归锁 3. 信号量 4. GIL全局解释器锁 1. 背景 2. 加锁的原因: 3. GIL与Lock锁的区别 4. 为什么GIL保证不了自己数据的安全? 5. 验证计算密集型.IO密集型的效率 6. 多线程实现socket通信 7. 进程池,线程…
Python中的进程与线程 学习知识,我们不但要知其然,还是知其所以然.你做到了你就比别人NB. 我们先了解一下什么是进程和线程. 进程与线程的历史 我们都知道计算机是由硬件和软件组成的.硬件中的CPU是计算机的核心,它承担计算机的所有任务. 操作系统是运行在硬件之上的软件,是计算机的管理者,它负责资源的管理和分配.任务的调度. 程序是运行在系统上的具有某种功能的软件,比如说浏览器,音乐播放器等. 每次执行程序的时候,都会完成一定的功能,比如说浏览器帮我们打开网页,为了保证其独立性,就需要一个专…
需要注意一下不能无限的开进程,不能无限的开线程最常用的就是开进程池,开线程池.其中回调函数非常重要回调函数其实可以作为一种编程思想,谁好了谁就去掉 只要你用并发,就会有锁的问题,但是你不能一直去自己加锁吧那么我们就用QUEUE,这样还解决了自动加锁的问题由Queue延伸出的一个点也非常重要的概念.以后写程序也会用到这个思想.就是生产者与消费者问题 一.Python标准模块--concurrent.futures(并发未来) concurent.future模块需要了解的1.concurent.f…
1.线程池的概念 由于python中的GIL导致每个进程一次只能运行一个线程,在I/O密集型的操作中可以开启多线程,但是在使用多线程处理任务时候,不是线程越多越好,因为在线程切换的时候,需要切换上下文环境,这样会导致CPU的大量开销,同时产生大量的切换时间浪费.为了解决这个问题,线程池概念被提出.预先创建好一个较为优化的数量的线程,让过来的任务立刻能够使用,就形成了线程池.python中的concurrent.futures模块为我们做了很好地封装,该模块为我们封装了线程池和进程池. 2.最佳线…
1.进程池的概念 python中,进程池内部会维护一个进程序列.当需要时,程序会去进程池中获取一个进程. 如果进程池序列中没有可供使用的进程,那么程序就会等待,直到进程池中有可用进程为止. 2.进程池的内置方法 apply 从进程池里取一个进程并同步执行 apply_async 从进程池里取出一个进程并异步执行 terminate 立刻关闭进程池 join 主进程等待所有子进程执行完毕,必须在close或terminete之后 close 等待所有进程结束才关闭线程池 同步是指一个进程在执行某个…
#提交任务的两种方式 #1.同步调用:提交完任务后,就在原地等待任务执行完毕,拿到结果,再执行下一行代码,导致程序是串行执行 一.提交任务的两种方式 1.同步调用:提交任务后,就在原地等待任务完毕,拿到结果,再执行下一行代码,导致程序串行执行 from concurrent.futures import ThreadPoolExecutor import time import random def produce(name): print('%s is producing' %name) ti…
python中的进程池: 我们可以写出自己希望进程帮助我们完成的任务,然后把任务批量交给进程池 进程池帮助我们创建进程完成任务,不需要我们管理.进程池:利用multiprocessing 下的Pool能够创建进程池Pool(n) 传入一个n能够开一个能容纳n个进程任务的进程池. 如果不传入参数,或者传入负数 能开一个动态控制大小的进程池具体的使用方法如下:提醒大家要认真看注释 from multiprocessing import Pool import os,time,random #绑定给进…
昨日内容回顾 进程 multiprocess Process —— 进程 在python中创建一个进程的模块 start daemon 守护进程 join 等待子进程执行结束 锁 Lock acquire release 锁是一个同步控制的工具 如果同一时刻有多个进程同时执行一段代码, 那么在内存中的数据是不会发生冲突的 但是,如果涉及到文件,数据库就会发生资源冲突的问题 我们就需要用锁来把这段代码锁起来 任意一个进程执行了acquire之后, 其他所有的进程都会在这里阻塞,等待一个releas…
昨日内容回顾 进程 multiprocess Process —— 进程 在python中创建一个进程的模块 start daemon 守护进程 join 等待子进程执行结束 锁 Lock acquire release 锁是一个同步控制的工具 如果同一时刻有多个进程同时执行一段代码, 那么在内存中的数据是不会发生冲突的 但是,如果涉及到文件,数据库就会发生资源冲突的问题 我们就需要用锁来把这段代码锁起来 任意一个进程执行了acquire之后, 其他所有的进程都会在这里阻塞,等待一个releas…
8.6 GIL锁** Global interpreter Lock 全局解释器锁 实际就是一把解释器级的互斥锁 In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple native threads from executing Python bytecodes at once. This lock is necessary mainly because CPython's memory…
进程池 import multiprocessing import time def do_calculation(data): print(multiprocessing.current_process().name + " " + str(data)) time.sleep(3) return data * 2 def start_process(): print ('Starting', multiprocessing.current_process().name) if __n…
1.进程池 当有成千上万个任务需要被执行的时候,有了进程池我们就不必去创建大量的进程. 首先,创建进程需要消耗时间,销毁进程(空间,变量,文件信息等等的内容)也需要消耗时间, 第二即便开启了成千上万的进程,操作系统也不能让他们同时执行,维护一个很大的进程列表的同时,调度的时候,还需要进行频繁切换并且记录每个进程的执行节点, 这样反而会影响程序的效率. 创建一个有固定数量的进程池, 执行任务的时候就拿池中的进程来处理任务,等到处理完毕,进程并不关闭,而是将进程再放回进程池中继续等待任务, 可以减少…
一.进程池 (同步 异步 返回值) 缺点: 开启进程慢 几个CPU就能同时运行几个程序 进程的个数不是无线开启的 应用: 100个任务 进程池 如果必须用多个进程 且是高计算型 没有IO型的程序 希望并行 最充分的使用CPU 示例: import os import time from multiprocessing import Pool def func1(): time.sleep(2) print(os.getpid(),i) if __name__=="__main__"&q…
python为我们提供的标准模块concurrent.futures里面有ThreadPoolExecutor(线程池)和ProcessPoolExecutor(进程池)两个模块. 在这个模块里他们俩在用法上是一样的. concurrent.futures官方文档: https://docs.python.org/dev/library/concurrent.futures.html #1 介绍 concurrent.futures模块提供了高度封装的异步调用接口 ThreadPoolExecu…
Python标准模块-concurrent.futures #1 介绍 concurrent.futures模块提供了高度封装的异步调用接口 ThreadPoolExecutor:线程池,提供异步调用 ProcessPoolExecutor: 进程池,提供异步调用 Both implement the same interface, which is defined by the abstract Executor class. #2 基本方法 #submit(fn, *args, **kwar…
一 进程池与线程池 1.为什么需要进程池和线程池 基于多进程或多线程实现并发的套接字通信,然而这种实现方式的致命缺陷是: 服务端的程序运行在一台机器身上,一台机器性能是有极限的,不能无限开线程 服务的开启的进程数或线程数都会随着并发的客户端数目地增多而增多,这会对服务端主机带来巨大的压力,甚至于不堪重负而瘫痪,于是我们必须对服务端开启的进程数或线程数加以控制,让机器在一个自己可以承受的范围内运行 2.线程池和进程池作用 这就是进程池或线程池的用途,例如进程池,就是用来存放进程的池子,本质还是基于…
引入进程池与线程池 使用ProcessPoolExecutor进程池,使用ThreadPoolExecutor 使用shutdown 使用submit同步调用 使用submit异步调用 异步+回调函数 并发实现套接字通信 引入进程池 在学习线程池之前,我们先看一个例子 # from multiprocessing import Process # import time # # def task(name): # print('name',name) # time.sleep(1) # if _…
concurrent.futures 这个模块是异步调用的机制concurrent.futures 提交任务都是用submitfor + submit 多个任务的提交shutdown 是等效于Pool中的close+join,是指不允许再继续向池中增加任务,然后让父进程(线程)等待池中所有进程执行完所有任务. 针对计算密集的程序来说 不管是Pool的进程池还是ProcessPoolExecutor()的进程池,执行效率相当 ThreadPoolExecutor 的效率要差很多 所以 当计算密集时…
python 进程/线程详解 进程定义:以一个整体的形式暴露给操作系统管理,它里面包含对各种资源的调用,内存的管理,网络接口的调用等等,对各种资源管理的集合,就可以叫做一个进程. 线程定义:线程是操作系统能够进行运算调度的最小单位(是一串指令的集合).它被包含在进程之中,是进程中的实际运作单位.一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务. 另说明:进程是不能直接操作CPU执行的,每个进程的执行都是默认创建一个主线程来操作CPU进行执行指令集合…
对于操作系统来说,一个任务就是一个进程(Process),比如打开一个浏览器就是启动一个浏览器进程,打开一个记事本就启动了一个记事本进程,打开两个记事本就启动了两个记事本进程,打开一个Word就启动了一个Word进程. 有些进程还不止同时干一件事,比如Word,它可以同时进行打字.拼写检查.打印等事情.在一个进程内部,要同时干多件事,就需要同时运行多个"子任务",我们把进程内的这些"子任务"称为线程(Thread).   同步是指:发送方发出数据后,等接收方发回响应…
一,前言 进程:是程序,资源集合,进程控制块组成,是最小的资源单位 特点:就对Python而言,可以实现真正的并行效果 缺点:进程切换很容易消耗cpu资源,进程之间的通信相对线程来说比较麻烦 线程:是进程中最小的执行单位. 特点无法利用多核,无法实现真正意义上是并行效果. 优点:对于IO密集型的操作可以很好利用IO阻塞的时间 二,多进程 2.1 multiprocessing模块介绍 在上一节多线程中讲到,由于GIL的原因,多线程无法利用多核优势,如果想要充分地使用多核CPU的资源,在pytho…
本节内容 一.线程进程介绍 二. 线程 1.线程基本使用 (Threading) 2.线程锁(Lock.RLock) 3.信号量(Semaphore) 4.事件(event) 5.条件(Condition) 6.定时器 (Timer) 7.线程池 (ThreadPoolExecutor) 三.进程 1.进程基本使用 2.进程数据共享 3.进程池 四.协程 一.线程进程介绍 1. 工作最小单元是线程 2. 应用程序 -> 至少有一个进程 -> 至少有一个线程 3. 应用场景: IO密集型:线程…
一.操作系统中相关进程的知识   Unix/Linux操作系统提供了一个fork()系统调用,它非常特殊.普通的函数调用,调用一次,返回一次,但是fork()调用一次,返回两次,因为操作系统自动把当前进程(称为父进程)复制了一份(称为子进程),然后,分别在父进程和子进程内返回.   子进程永远返回0,而父进程返回子进程的ID.这样做的理由是,一个父进程可以fork出很多子进程,所以,父进程要记下每个子进程的ID,而子进程只需要调用getppid()就可以拿到父进程的ID.   Python的os…
进程和线程究竟是什么东西?传统网络服务模型是如何工作的?协程和线程的关系和区别有哪些?IO过程在什么时间发生? 一.上下文切换技术 简述 在进一步之前,让我们先回顾一下各种上下文切换技术. 不过首先说明一点术语.当我们说“上下文”的时候,指的是程序在执行中的一个状态.通常我们会用调用栈来表示这个状态——栈记载了每个调用层级执行到哪里,还有执行时的环境情况等所有有关的信息. 当我们说“上下文切换”的时候,表达的是一种从一个上下文切换到另一个上下文执行的技术.而“调度”指的是决定哪个上下文可以获得接…
  本节内容 进程.与线程区别 cpu运行原理 python GIL全局解释器锁 线程 语法 join 线程锁之Lock\Rlock\信号量 将线程变为守护进程 Event事件 queue队列 生产者消费者模型 Queue队列 开发一个线程池 进程 语法 进程间通讯 进程池 进程与线程 什么是线程(thread)? 线程是操作系统能够进行运算调度的最小单位.它被包含在进程之中,是进程中的实际运作单位.一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务…
1.基于多线程实现套接字服务端支持并发 服务端 from socket import * from threading import Thread def comunicate(conn): while True: # 通信循环 try: data = conn.recv(1024) if len(data) == 0: break conn.send(data.upper()) except ConnectionResetError: break conn.close() def server…