BPTT算法推导】的更多相关文章

随时间反向传播 (BackPropagation Through Time,BPTT) 符号注解: \(K\):词汇表的大小 \(T\):句子的长度 \(H\):隐藏层单元数 \(E_t\):第t个时刻(第t个word)的损失函数,定义为交叉熵误差\(E_t=-y_t^Tlog(\hat{y}_t)\) \(E\):一个句子的损失函数,由各个时刻(即每个word)的损失函数组成,\(E=\sum\limits_t^T E_t\). 注: 由于我们要推倒的是SGD算法, 更新梯度是相对于一个训练样…
作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 这是RNN教程的第三部分. 在前面的教程中,我们从头实现了一个循环神经网络,但是并没有涉及随时间反向传播(BPTT)算法如何计算梯度的细节.在这部分,我们将会简要介绍BPTT并解释它和传统的反向传播有何区别.我们也会尝试着理解梯度消失问题,这也是LSTM和GRU(目前NLP及其它领域中最为流行和有用的模型)得以发展的原因.梯度消失问题最早是由 Sepp Hochr…
网上有很多Simple RNN的BPTT(Backpropagation through time,随时间反向传播)算法推导.下面用自己的记号整理一下. 我之前有个习惯是用下标表示样本序号,这里不能再这样表示了,因为下标需要用做表示时刻. 典型的Simple RNN结构如下: 图片来源:[3] 约定一下记号: 输入序列 $\textbf x_{(1:T)} =(\textbf x_1,\textbf x_2,...,\textbf x_T)$ : 标记序列 $\textbf y_{(1:T)}…
一,什么是BP "BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一.BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程.它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小.BP神经网络模型拓扑结构包括输入层(input).隐层(hide layer)和输出层(output…
前言 五一快到了,小张准备去旅游了! 查了查到各地的机票 因为今年被扣工资扣得很惨,小张手头不是很宽裕,必须精打细算.他想弄清去各个城市的最低开销. [嗯,不用考虑回来的开销.小张准备找警察叔叔说自己被拐卖,免费被送回来.] 如果他想从珠海飞到拉萨,最少要花多少机票钱呢?下面就说到我们今天要说的这个算法. 迪杰斯特拉(Dijkstra)算法 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为…
最近因为实习的缘故,所以开始复习各种算法推导~~~就先拿这个xgboost练练手吧. (参考原作者ppt 链接:https://pan.baidu.com/s/1MN2eR-4BMY-jA5SIm6WCGg提取码:bt5s ) 1.xgboost的原理 首先值得说明的是,xgboost是gbdt的升级版,有兴趣的话可以先看看gbdt的推导.xgboost同样是构造一棵棵树来拟合残差,但不同之处在于(1)gbdt使用一阶导,xgboost使用二阶导.(2)xgboost在loss中包括模型复杂度,…
一. 前言: 作为AI入门小白,参考了一些文章,想记点笔记加深印象,发出来是给有需求的童鞋学习共勉,大神轻拍! [毒鸡汤]:算法这东西,读完之后的状态多半是 --> “我是谁,我在哪?” 没事的,吭哧吭哧学总能学会,毕竟还有千千万万个算法等着你. 本文货很干,堪比沙哈拉大沙漠,自己挑的文章,含着泪也要读完! ▌二. 科普: 生物上的神经元就是接收四面八方的刺激(输入),然后做出反应(输出),给它一点就灿烂.仿生嘛,于是喜欢放飞自我的 某些人 就提出了人工神经网络.一切的基础-->人工神经单元,…
SVD在推荐系统中的应用详解以及算法推导     出处http://blog.csdn.net/zhongkejingwang/article/details/43083603 前面文章SVD原理及推导已经把SVD的过程讲的很清楚了,本文介绍如何将SVD应用于推荐系统中的评分预测问题.其实也就是复现Koren在NetFlix大赛中的使用到的SVD算法以及其扩展出的RSVD.SVD++. 记得刚接触SVD是在大二,那会儿跟师兄在做项目的时候就用到这个东西,然后到大三下学期刚好百度举办了一个电影推荐…
本文为手稿,旨在搞清楚为什么BPTT算法会多路反向求导,而不是一个感性的认识. 假设我们要对E3求导(上图中的L3),那么则有: 所以S2是W的函数,也就是说,我们不能说: 因为WS2 = WS2(w),S2里面包含了W这个变量,S2是W的函数,也许有人会说:"S2里面的W是常数吧",那么请想一想S…
1. 随时间反向传播BPTT(BackPropagation Through Time, BPTT) RNN(循环神经网络)是一种具有长时记忆能力的神经网络模型,被广泛用于序列标注问题.一个典型的RNN结构图如下所示: 从图中可以看到,一个RNN通常由三小层组成,分别是输入层.隐藏层和输出层.与一般的神经网络不同的是,RNN的隐藏层存在一条有向反馈边,正是这种反馈机制赋予了RNN记忆能力.要理解左边的图可能有点难度,我们将其展开成右边的这种更加直观的形式,其中RNN的每个神经元接受当前时刻的输入…