本篇开始,结合前面所学的Python基础,开始进行实战学习.学习书目为<利用Python进行数据分析>韦斯-麦金尼 著. 之前跳过本书的前述基础部分(因为跟之前所学的<Python基础>重复),进入第四章-Numpy基础的学习. 1. 了解IPython - Python实验组必备工具 1.1 如何安装IPython 安装IPython和jupyter两个包.(本人使用的是PyCharm+Anaconda,直接在Settings里面搜索install即可) 1.2 如何使用IPyt…
以此记录阅读和学习<利用Python进行数据分析>这本书中的觉得重要的点! 第一章:准备工作 1.一组新闻文章可以被处理为一张词频表,这张词频表可以用于情感分析. 2.大多数软件是由两部分代码组成:少量需要占用大部分执行时间的代码,以及大量不经常执行的“粘合剂代码”. cython已经成为python领域中创建编译型扩展以及对接c/c++代码的一大途径. 3.在那些要求延迟性非常小的应用程序中(例如高频交易系统),为了尽最大可能地优化性能,耗费时间使用诸如C++这样更低级.更低生产率的语言进行…
7.3 字符串操作 pandas加强了Python的字符串和文本处理功能,使得能够对整组数据应用字符串表达式和正则表达式,且能够处理烦人的缺失数据. 7.3.1 字符串对象方法 对于许多字符串处理和脚本应用,内置的字符串方法能够满足要求. 1)用split将以逗号分隔的字符串拆分成数段 2)split常与strip一起使用,用于去除空白符(包括换行符) 3)利用加法,可将这些字符串以其他符号(如,双冒号)分隔的形式连接起来 Ps:该方式不实用,可用向字符串"::"的join方法传入一个…
6.2 二进制数据格式 实现数据的高效二进制格式存储最简单的办法之一,是使用Python内置的pickle序列化. pandas对象都有一个用于将数据以pickle格式保存到磁盘上的to_pickle方法: 通过pickle直接读取被pickle化的数据,或使用更为方便的pandas.read_pickle: Ps:pickle仅建议用于短期存储格式.因其很难保证该格式是永远稳定的. pandas内置支持两个二进制数据格式:HDF5和MessagePack.pandas或Numpy数据的其他存储…
4.2 通用函数:快速的元素级数组函数 通用函数(即ufunc)是一种对ndarray中的数据执行元素级运算的函数. 1)一元(unary)ufunc,如,sqrt和exp函数 2)二元(unary)ufunc,可接受2个数组,并返回一个结果数组,如add或maximum函数   3)部分ufunc可返回多个数组,如modf,是Python内置函数divmod的矢量化版本,可返回浮点数数组的整数部分和小数部分: 4)Ufuncs可以接受一个out可选参数,这样就能在数组原地进行操作. 列举部分一…
学习时间:2019/11/03 周日晚上23点半开始,计划1110学完 学习目标:Page218-249,共32页:目标6天学完(按每页20min.每天1小时/每天3页,需10天) 实际反馈:实际XXX学完,耗时X天,X小时,平均每页X分钟. 实际应用中,数据可能分散在许多文件或数据库中,存储的形式也不利于分析.本章关注可以聚合.合并.重塑数据的方法. 8.1 层次化索引 层次化索引(hierarchical indexing)是pandas的一项重要功能,它使得能在一个轴上拥有多个(两个以上)…
学习时间:2019/10/25 周五晚上22点半开始. 学习目标:Page188-Page217,共30页,目标6天学完,每天5页,预期1029学完. 实际反馈:集中学习1.5小时,学习6页:集中学习1.7小时(100分钟),学习5页: 实际20191103学完,因本周工作耽误未进行学习,耗时5天,10小时,平均每页20分钟. 数据准备工作:加载.清理.转换以及重塑,通常会占用分析师80%的时间或更多!!!学会高效的数据清洗和准备,将绝对提升生产力!本章将讨论处理缺失数据.重复数据.字符串操作和…
5.2 基本功能 (1)重新索引 - 方法reindex 方法reindex是pandas对象地一个重要方法,其作用是:创建一个新对象,它地数据符合新地索引. 如,对下面的Series数据按新索引进行重排: 根据新索引重排后的结果如下,当某个索引值不存在,就会在原来的基础上引入缺失值NaN: 利用reindex的method选项,实现插值处理.尤其对于时间序列这样的有序数据,会经常用到该选项. 如,使用 ffill 实现 前向值 填充: 利用DataFrame,reindex修改(行)索引和列.…
pandas库,含有使数据清洗和分析工作变得更快更简单的数据结构和操作工具.pandas是基于NumPy数组构建. pandas常结合数值计算工具NumPy和SciPy.分析库statsmodels和scikitlearn,和可视化库matplotlib等工具一同使用. 5.1 pandas数据结构介绍 pandas的主要数据结构:Series和DataFrame (1)Series Series是一种类似于一维数组的对象,由一组数据(各种NumPy数据类型)以及一组与之相关的数据标签(即索引)…
import nltk from nltk.book import * nltk.corpus.gutenberg.fileids() emma = nltk.corpus.gutenberg.words('austen-emma.txt') len(emma) emma = nltk.Text(nltk.corpus.gutenberg.words('austen-emma.txt')) emma.concordance("surprize") from nltk.corpus im…