POJ 2234 Matches Game】的更多相关文章

Matches Game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7567   Accepted: 4327 Description Here is a simple game. In this game, there are several piles of matches and two players. The two player play in turn. In each turn, one can ch…
Description Here is a simple game. In this game, there are several piles of matches and two players. The two player play in turn. In each turn, one can choose a pile and take away arbitrary number of matches from the pile (Of course the number of mat…
题目链接: https://cn.vjudge.net/problem/POJ-2234 题目描述: Here is a simple game. In this game, there are several piles of matches and two players. The two player play in turn. In each turn, one can choose a pile and take away arbitrary number of matches fro…
传送门 #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; int main() { int n; while(~scanf("%d",&n)) { ; ;i<n;i++) { scanf("%d",&a); res^=a; } if(!res)//T prin…
题目大意:尼姆博弈,判断是否先手必胜. 题目思路: 尼姆博弈:有n堆各a[]个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜. 获胜规则:ans=(a[1]^a[2] --^a[n]),若ans==0则后手必胜,否则先手必胜. #include<iostream> #include<algorithm> #include<cstring> #include<vector> #include<stdio.h>…
这道题也是一个博弈论 根据一个性质 对于\( Nim \)游戏,即双方可以任取石子的游戏,\( SG(x) = x \) 所以直接读入后异或起来输出就好了 代码 #include <cstdio> #include <algorithm> #include <cstring> using namespace std; int m; int main(){ while(scanf("%d",&m)!=EOF){ ,mid; ;i<=m;i…
http://poj.org/problem?id=2234 博弈论真是博大精深orz 首先我们仔细分析很容易分析出来,当只有一堆的时候,先手必胜:两堆并且相同的时候,先手必败,反之必胜. 根据博弈论的知识(论文 张一飞:<由感性认识到理性认识——透析一类搏弈游戏的解答过程>) 局面可以分解,且结果可以合并. 局面均是先手 当子局面是 胜 和 败,那么局面则为胜 当子局面是 败 和 胜,那么局面则为胜 当子局面是 败 和 败,那么局面则为败 当子局面为 胜 和 胜,那么局面为不确定 而这些性质…
#include<iostream> #include<stdio.h> #include<algorithm> #define MAXN 100 using namespace std; //把所有堆的石子数目用二进制数表示出来,当全部这些数按位异或结果为0时当前局面为必败局面,否则为必胜局面: int a[MAXN]; void op(int & num); int trans_10_to_2(int num); int main() { //freopen…
思路: nim博弈裸题 xor一下 //By SiriusRen #include <cstdio> using namespace std; int n,tmp,xx; int main(){ while(~scanf("%d",&n)){ tmp=0; while(n--)scanf("%d",&xx),tmp^=xx; puts(!tmp?"No":"Yes"); } }…
在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧. 必胜点和必败点的概念:        P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败.        N点:必胜点,处于此情况下,双方操作均正确的情况下必胜. 必胜点和必败点的性质:         1.所有终结点是 必败点 P .(我们以此为基本前提进行推理,换句话说,我们以此为假设)         2.从任何必胜点N 操作,至少有一种方式可以进入必败点 P.         3.无论如何操作,必败点P 都…