Sparse Filtering简介】的更多相关文章

当前很多的特征学习(feature learning)算法需要很多的超参数(hyper-parameter)调节, Sparse Filtering则只需要一个超参数--需要学习的特征的个数, 所以非常易于进行参数调节. 1.特征分布及其特性 基本上所有的参数学习算法都是要生成特定的特征分布, 比如sparse coding是要学得一种稀疏的特征, 亦即学到的特征中只有较少的非零项. 基本上所有的特征学习算法都是为了优化特征分布的某些特性的.Sparse Filtering也是这样的一种特征学习…
  Sparse Filtering 是一个用于提取特征的无监督学习算法,与通常特征学习算法试图建模训练数据的分布的做法不同,Sparse Filtering 直接对训练数据的特征分布进行分析,在所谓"好特征"的指导下构建目标函数来进行优化,其中只涉及一个可调参数.本文将主要讨论两个问题: (1)什么样的特征是好的特征: (2)如何利用好特征的条件来构造 Sparse Filtering 的目标函数. 目录链接 (一)网络结构与特征矩阵 (二)好特征的刻画 (三)目标函数的建立和求解…
  Sparse Filtering 是一个用于提取特征的无监督学习算法,与通常特征学习算法试图建模训练数据的分布的做法不同,Sparse Filtering 直接对训练数据的特征分布进行分析,在所谓"好特征"的指导下构建目标函数来进行优化,其中只涉及一个可调参数.本文将主要讨论两个问题: (1)什么样的特征是好的特征: (2)如何利用好特征的条件来构造 Sparse Filtering 的目标函数. 目录链接 (一)网络结构与特征矩阵 (二)好特征的刻画 (三)目标函数的建立和求解…
  Sparse Filtering 是一个用于提取特征的无监督学习算法,与通常特征学习算法试图建模训练数据的分布的做法不同,Sparse Filtering 直接对训练数据的特征分布进行分析,在所谓"好特征"的指导下构建目标函数来进行优化,其中只涉及一个可调参数.本文将主要讨论两个问题: (1)什么样的特征是好的特征: (2)如何利用好特征的条件来构造 Sparse Filtering 的目标函数. 目录链接 (一)网络结构与特征矩阵 (二)好特征的刻画 (三)目标函数的建立和求解…
Sparse Filtering 当前很多的特征学习(feature learning)算法需要很多的超参数(hyper-parameter)调节, Sparse Filtering则只需要一个超参数--需要学习的特征的个数, 所以非常易于进行参数调节. 1.特征分布及其特性 基本上所有的参数学习算法都是要生成特定的特征分布, 比如sparse coding是要学得一种稀疏的特征, 亦即学到的特征中只有较少的非零项. 基本上所有的特征学习算法都是为了优化特征分布的某些特性的.Sparse Fil…
1. AutoEncoder AutoEncoder是一种特殊的三层神经网络, 其输出等于输入:\(y^{(i)}=x^{(i)}\), 如下图所示: 亦即AutoEncoder想学到的函数为\(f_{W,b} \approx x\), 来使得输出\(\hat{x}\)比较接近x. 乍看上去学到的这种函数很平凡, 没啥用处, 实际上, 如果我们限制一下AutoEncoder的隐藏单元的个数小于输入特征的个数, 便可以学到数据的很多有趣的结构. 如果特征之间存在一定的相关性, 则AutoEncod…
原文地址:https://blog.csdn.net/liupeifeng3514/article/details/79774572 每个项目都会有多套运行环境(开发,测试,正式等等),不同的环境配置也不尽相同(如jdbc.url),借助Jenkins和自动部署提供的便利,我们可以把不同环境的配置文件单独抽离出来,打完包后用对应环境的配置文件替换打包后的文件,其实maven已经给我们提供了替换方案:profile + filtering Filtering Filtering 是 maven 的…
整体简介 1.理解继承——继承关系图 2.实现继承与接口多继承 3.new. virtual.override方法 4.抽象方法和抽象类的继承 5.继承的本质 6.继承的复用性.扩展性和安全性 7.多聚合,少继承:低耦合,高内聚 8.扩展方法. 1.理解继承——继承关系图 理解继承.以下图为例: 继承实际上包含了对现实的一种抽象,现实生活中不存在动物这种实体东西,但是它却代表了具有相同特征和属性的一类事物.类别与类别之间的关系放映为相似或者不相似某种抽象关系.继承体现了面向对象技术中的复用性.扩…
目录 背景Java类库中的实例如何实现这种结构?备注 背景返回目录 Java 中区分 Api 和 Spi,通俗的讲:Api 和 Spi 都是相对的概念,他们的差别只在语义上,Api 直接被应用开发人员使用,Spi 被框架扩张人员使用,详细内容可以看:http://www.cnblogs.com/happyframework/p/3325560.html. Java类库中的实例返回目录 代码 1 Class.forName("com.mysql.jdbc.Driver"); 2 Conn…
http://blog.csdn.net/zouxy09/article/category/1218765 图像卷积与滤波的一些知识点 图像卷积与滤波的一些知识点zouxy09@qq.comhttp://blog.csdn.net/zouxy09       之前在学习CNN的时候,有对卷积经常一些学习和整理,后来就烂尾了,现在稍微整理下,先放上来,以提醒和交流.一.线性滤波与卷积的基本概念      线性滤波可以说是图像处理最基本的方法,它可以允许我们对图像进行处理,产生很多不同的效果.做法很…