4827: [Hnoi2017]礼物】的更多相关文章

4827: [Hnoi2017]礼物 题意:略 以前做的了 化一化式子就是一个卷积和一些常数项 我记着确定调整值还要求一下导... #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> using namespace std; typedef long long ll; const int N = (1<&…
4827: [Hnoi2017]礼物 链接 分析: 求最小的$\sum_{i=1}^{n}(x_i-y_i)^2$ 设旋转了j位,每一位加上了c. $\sum\limits_{i=1}^{n}(x_{i+j}+c-y_i)^2$ $=\sum\limits_{i=1}^{n}x_{i+j}^2+y_i^2+c^2+2x_{i+j}c-2y_ic-2x_{i+j}y_i$ $=\sum x_i^2+\sum y_i^2+nc^2+2c \sum (x_i-y_i)-2\sum x_{i+j}y_i…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4827 式子就是 \sum_{i=0}^{n-1}(a[ i ] - b[ i+k ] + c)^2 .把 b 翻成两倍后卷积即可.关于 c 的部分是一个二次函数,注意 c 只能是整数! #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include&l…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4827 首先,旋转对应,可以把 b 序列扩展成2倍,则 a 序列对应到的还是一段区间: 再把 a 序列翻转,就成了卷积的形式: 如果 b 从 k 位置断开,则值为 ∑(0<=i<=n) (a[n-i] - b[k+i] + c)2 拆开求即可,注意 c 的取值是个二次函数,最低点左右两个整数值都要试一下: 如果一开始把 n-- 了,别忘了计算时带入 n+1 ! 代码如下: #include…
一道FFT 然而据说暴力可以水70分 然而我省选的时候看到了直接吓傻了  连暴力都没打 太弱了啊QAQ emmmm 详细的拆开就看其他题解吧233 最后那一步卷积其实我一直没明白 后来画画图终于懂了 只要把其中一个反过来 多项式乘法的结果中的每一项系数就对应某一个Σx[i] * y[j] 的结果 前面几项是不完全的结果 但是太小了就被忽略啦 代码如下 /************************************************************** Problem:…
[问题描述] 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度. 但是在她生日的前一天,我的室友突然发现他好像拿错了一个手环,而且已经没时间去更换它了!他只能使用一种特殊的方法,将其中一个手环中所有装饰物的亮度增加一个相同的自然数 c(即非负整数).并且由于这个手环是一个圆,可以以任意的角度旋转它,但是由于上面 装饰物的方向是固定的,所以手环不能翻转.需要在经过亮度改造和旋转之…
Description 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在她生日的前一天,我的室友突然发现他好像拿错了一个手环,而且已经没时间去更换它了!他只能使用一种特殊的方法,将其中一个手环中所有装饰物的亮度增加一个相同的自然数 c(即非负整数).并且由于这个手环是一个圆,可以以任意的角度旋转它,但是由于上面 装饰物的方向是固定的,所以手环不能翻转.需要在经过亮度改造…
题目上要求一个循环卷积的最小值,直接破环成链然后FFT就可以了. 然后考虑计算的式子,可以分成两个部分分开计算. 前半部分FFT,后半部分扫一遍. #include <map> #include <ctime> #include <cmath> #include <queue> #include <cstdio> #include <cstring> #include <iostream> #include <alg…
记得FFT要开大数组!!开到快MLE的那种!!我这个就是例子TAT,5e5都RE了 在这题上花的时间太多了,还是FFT不太熟练. 首先看70分的n方做法:从0下标开始存,先n--,把a数组倍增,然后枚举a数组的起点st(相当于环上a的st和b的0相匹配),设x为增量 \[ \sum_{i=0}^{n}(a[i+s]+x-b[i])^2 \] \[ =\sum_{i=0}^{n}(a[i+s]-b[i])^2+x^2-2*x*(a[i+s]-b[i]) \] \[ =\sum_{i=0}^{n}(…
题解稍后在笔记本中更新 Code: #include <bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) #define maxn 3100000 #define ll long long using namespace std; namespace FFT { #define pi 3.1415926535898 struct cpx { double x,y; cpx(double a…
4827: [Hnoi2017]礼物 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1315  Solved: 915[Submit][Status][Discuss] Description 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一 个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在她生日的前一天,我的室友突 然发现他好像拿错了一个手环,而且已经没时间去更换它…
题目链接:[AH2017/HNOI2017]礼物 题意: 两个环x, y 长度都为n k可取 0 ~ n - 1      c可取任意值 求 ∑ ( x[i] - y[(i + k) % n + 1] + c) ^ 2 的最小值 ans[k] = ∑ ( x[i], y[(i + k) % n + 1] ) ^ 2 拆项 发现ans[k] = ∑ x[i] ^ 2 + ∑ y[i] ^ 2  + n * c ^ 2 + 2 * ∑ x[i] * c - 2 * ∑ y[i] * c - 2 *…
BZOJ4827 [Hnoi2017]礼物 Solution 如果一串数的增加,不就等于另一串数减吗? 那么我们可以把答案写成另一个形式: \(ans=\sum_{i=1}^n(x_i-y_i+C)^2\) \(y\)可以是重新排列 那么疯狂拆一下式子,化简之后就是: \(ans=\sum_{i=1}^nx_i^2+\sum_{i=1}^ny_i^2+\sum_{i=1}^nC^2+2*C*\sum_{i=1}^n(x_i-y_i)-2*\sum_{i=1}^nx_i*y_i​\) 如果我们枚举…
[LG3723][AHOI2017/HNOI2017]礼物 题面 洛谷 题解 首先我们将\(c\)看作一个可以为负的整数,那么我们就可以省去讨论在哪个手环加\(c\)的繁琐步骤了 设我们当前已经选好了手环的顺序 则 \[ Ans=\sum_{i=1}^n(x_i-y_i+c)^2\\ =\sum_{i=1}^nx_i^2+\sum_{i=1}^ny_i^2+n*c^2+2c\sum_{i=1}^n(x_i-y_i)-2\sum_{i=1}^nx_i*y_i \] 实际上,因为前面都是定值(\(C…
P3723 [AH2017/HNOI2017]礼物 题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手环,一个留给自己,一个送给她.每个手环上各有 \(n\) 个装饰物,并且每个装饰物都有一定的亮度. 但是在她生日的前一天,我的室友突然发现他好像拿错了一个手环,而且已经没时间去更换它了!他只能使用一种特殊的方法,将其中一个手环中所有装饰物的亮度增加一个相同的自然数 \(c\)(即非负整数).并且由于这个手环是一个圆,可以以任意的角度旋转它,但是由于上面装饰物…
题面 传送门:洛咕 Solution 调得我头大,我好菜啊 好吧,我们来颓柿子吧: 我们可以只旋转其中一个手环.对于亮度的问题,因为可以在两个串上增加亮度,我们也可以看做是可以为负数的. 所以说,我们可以假设我们旋转\(B\)串,上下要加上的亮度差为\(p\),可以直接拍出一个最暴力的柿子: 设\(f(x)\)表示\(B\)串以\(x\)为开头的差异值,有: \(f(x)=\sum_{i=0}^{x-1}(B[i]-A[i+n-x]+p)^2+\sum_{i=x}^{n-1}(B[i]-A[i-…
笔记-[AH2017/HNOI2017]礼物 [AH2017/HNOI2017]礼物 \[\begin{split} ans_i=&\sum_{j=1}^n(a_j-b_j+i)^2\\ =&\sum_{j=1}^n(a_j^2+b_j^2+i^2-2a_jb_j+2ia_j-2ib_j)\\ =&\sum_{j=1}^na_j^2+\sum_{j=1}^nb_j^2+ni^2+2i\sum_{j=1}^na_j-2i\sum_{j=1}^nb_j-2\sum_{j=1}^na_j…
礼物 bzoj-4827 Hnoi-2017 题目大意:给定两个长度为$n$的手环,第一个手环上的$n$个权值为$x_i$,第二个为$y_i$.现在我可以同时将所有的$x_i$同时加上自然数$c$.我也可以将第一个手环任意旋转.旋转后每一个$x$对应一个$y$,那么代价为$\sum\limits_{i=0}^{n-1} (x_i-y_i)^2$.求最小代价. 注释:$1\le n\le 10^5$,$0\le maxval \le 100$. 想法: 水题啊..... 推推式子,我们假设就加了$…
礼物 这估计是最水,最无脑的一道题了 首先发现总和最接近时答案最小 发现答案就是\((\sum_{i=1}^{n}a[i]^2+b[i]^2)-2*max(\sum_{i=1}^{n}a[i]*b[i+j])(0<=j<=n-1)\) 前面随便算,主要是后面那个式子,其实就是两个数列错位相乘加起来最大值 把\(b\)反过来就变成\(\sum_{i=1}^{n}a[i]*b[n-i-j])(0<=j<=n-1)\),直接就多项式卷积,FFT一算就行了. // luogu-judger…
https://www.lydsy.com/JudgeOnline/problem.php?id=4827 式子化简一下,发现最后只跟 Σ xi*yi 有关 第二个序列反转,就可以用FFT优化 注意: 循环会想到将序列复制一遍,但只能复制一个序列, 若n=4,第一个序列为1 2 3 4,,第二个序列为5 6 7 8 只复制第一个序列,1 2 3 4 1 2 3 4 当i=5时,f[i]=2*0+1*0+4*8+3*7+2*6+1*5 如果第二个序列也复制,那么上面*0的地方将会出错 #inclu…
https://www.lydsy.com/JudgeOnline/problem.php?id=4827 https://www.luogu.org/problemnew/show/P3723 题面见原题. 参考了洛谷一些题解. 先推式子,x数组为a,y数组为b,将b数组倍长后有: 因为c的范围在[-m,m]之间,而m=100,且稍加思考后发现k在1,3,4项中是无用的,所以通过枚举c取得1,3,4项和的最小值. 考虑计算第二项,其实是卷积型,实际上将a数组前移并倒转即可得到: 变成了卷积,F…
BZOJ 4827 $$\sum_{i = 1}^{n}(x_i - y_i + c)^2 = \sum_{i = 1}^{n}(x_i^2 + y_i^2 + c^2 - 2 * x_iy_i + 2c * x_i - 2c * y_i) = \sum_{i = 1}^{n}x_i^2 + \sum_{i = 1}^{n}y_i^2 + nc^2 + (2\sum_{i = 1}^{n}(x_i -y_i))c - 2 * \sum_{i = 1}^{n}x_iy_i$$ 发现第一项和第二项是…
Description 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在她生日的前一天,我的室友突然发现他好像拿错了一个手环,而且已经没时间去更换它了!他只能使用一种特殊的方法,将其中一个手环中所有装饰物的亮度增加一个相同的自然数 c(即非负整数).并且由于这个手环是一个圆,可以以任意的角度旋转它,但是由于上面 装饰物的方向是固定的,所以手环不能翻转.需要在经过亮度改造…
\[推推公式,即求\Sigma^{n}_{i=1} (x_{i+k}-y_i+c)^2最小,c范围为[-m, m]\] \[拆开,就是\Sigma x_i^2 + \Sigma y_i^2 + n * c^2 + 2*c*\Sigma(x_{i+k}-y_i) - 2*\Sigma^{n}_{i=1} x_{i+k}y_i\] \[即求2*\Sigma^{n}_{i=1} x_{i+k}y_i最大,再枚举c即可\] 七十分暴力代码(暴力分贼多) # include <bits/stdc++.h>…
原文链接http://www.cnblogs.com/zhouzhendong/p/8823962.html 题目传送门 - BZOJ4827 题意 有两个长为$n$的序列$x$和$y$,序列$x,y$的第$i$项分别是$x_i,y_i$. 选择一个序列$A$,现在你可以对它进行如下两种操作: $1.$ 得到一个和$A$循环同构的序列$A'$. $2.$ 给所有的$A'_i$都加上$c(c\in N^+)$,得到序列$A''$. 你进行上面两个操作之后,得到的序列分别为$x'',y''$(注意$…
题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一 个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在她生日的前一天,我的室友突 然发现他好像拿错了一个手环,而且已经没时间去更换它了!他只能使用一种特殊的方法,将其中一个手环中所有 装饰物的亮度增加一个相同的自然数 c(即非负整数).并且由于这个手环是一个圆,可以以任意的角度旋转它, 但是由于上面 装饰物的方向是固定的,所以手环不能翻转.需要在经过亮度改造和旋转…
Description: 给定两个有n个数的序列,你可以将其中一个进行旋转(想象是在一个环上),或者对序列的每个数加上一个非负整数C 求操作后 \(\sum{(a_i-b_i)^2}\)的最小值 Description: \(n<=5*10^4,m<=100,a_i<=m\) Solution: 一眼看去,十分不可做,于是开始拆式子 \(\sum(a_i-b_i+C)^2\) \(=\sum a_i^2 +\sum b_i^2+2*\sum (a_i-b_i)*C +n*C^2-2*\s…
题解: 水题 化简一波式子会发现就是个二次函数再加上一个常数 而只有常数中的-2sigma(xiyi)是随移动而变化的 所以只要o(1)求出二次函数最大值然后搞出sigma(xiyi)就可以了 这个东西显然只要将一个倒序相乘就可以了 被这个m要乘2坑了一波...调了半天才过样例 代码: #include <bits/stdc++.h> using namespace std; #define N 200000 #define dob complex<double> const do…
传送门 nttnttntt 入门题. 考虑展开要求的式子∑i=0n−1(xi−yi−c)2\sum_{i=0}^{n-1}(x_i-y_i-c)^2∑i=0n−1​(xi​−yi​−c)2 =>∑i=0n−1(xi2+yi2+c2−2c(xi−yi)−2xiyi)\sum_{i=0}^{n-1}(x_i^2+y_i^2+c^2-2c(x_i-y_i)-2x_iy_i)∑i=0n−1​(xi2​+yi2​+c2−2c(xi​−yi​)−2xi​yi​) 令sum=∑i=0n−1xi−yisum=\…
题解 二项式展开,然后暴力FFT就好了.会发现有一个卷积与c无关,我们找一个最小的项就行了. Tips:记得要倍长其中一个数组,防止FFT出锅 代码如下: #include<bits/stdc++.h> using namespace std; typedef long long ll; const int maxn = 5e4+10; const double pi = acos(-1.0); struct Complex{ double r,i; Complex(double r,doub…