Recommender.recommend(uid, RECOMMENDER_NUM, rescorer); Recommender.recommend(long userID, int howMany, IDRescorer rescorer): 获得推荐结果,给userID推荐howMany个Item,凡rescorer中包含的Item都过滤掉. 其中源码中调用了以下方法 TopItems.getTopItems TopItems类的.getTopItems public static Li…
协同过滤 —— Collaborative Filtering 协同过滤简单来说就是根据目标用户的行为特征,为他发现一个兴趣相投.拥有共同经验的群体,然后根据群体的喜好来为目标用户过滤可能感兴趣的内容. 协同过滤推荐 —— Collaborative Filtering Recommend 协同过滤推荐是基于一组喜好相同的用户进行推荐.它是基于这样的一种假设:为一用户找到他真正感兴趣的内容的最好方法是首先找到与此用户有相似喜好的其他用户,然后将他们所喜好的内容推荐给用户.这与现实生活中的“口碑传…
一.离线推荐服务 离线推荐服务是综合用户所有的历史数据,利用设定的离线统计算法和离线推荐算法周期性的进行结果统计与保存,计算的结果在一定时间周期内是固定不变的,变更的频率取决于算法调度的频率. 离线推荐服务主要计算一些可以预先进行统计和计算的指标,为实时计算和前端业务相应提供数据支撑. 离线推荐服务主要分为统计性算法.基于ALS的协同过滤推荐算法以及基于ElasticSearch的内容推荐算法. 在recommender下新建子项目StatisticsRecommender,pom.xml文件中…
SparkMLlib-协同过滤推荐算法,电影推荐系统,物品喜好推荐 一.协同过滤 1.1 显示vs隐式反馈 1.2 实例介绍 1.2.1 数据说明 评分数据说明(ratings.data) 用户信息(users.dat) 电影信息(movies.dat) 程序代码 二.协同过滤推荐算法--推荐系统代码 2.1 训练数据 2.2 实战代码 2.3 运行结果(亲测可行) 三.Spark MLlib推荐算法 四.基于物品的Spark MLlib代码 推荐模型效果的评估 相关内容原文地址: 博客园:Le…
优化推荐系统的JVM关键参数 -Xmx 设定Java允许使用的最大堆空间.例如-Xmx512m表示堆空间上限为512MB -server 现代JVM有两个重要标志:-client和-server,分别为客户端程序(运行时间短.占用资源少)和服务器端程序(长时间运行.资源密集型)选择合适的JVM配置. -d32和-d64 分别设定为32位和64位模式.在一台64位的机器上,两种都是有效的.尽管通常情况下最好是让JVM自己决定,但32位模式可以降低内在需求(例如引用变成4字节).当然,32位模式下不…
ligh@local-host$ ssh-copy-id -i ~/.ssh/id_rsa.pub root@192.168.0.3 基于物品的协同过滤推荐算法--读"Item-Based Collaborative Filtering Recommendation Algorithms" . - 番石榴的日志 - 网易博客 基于物品的协同过滤推荐算法--读"Item-Based Collaborative Filtering Recommendation Algorithm…
在协同过滤推荐算法总结中,我们讲到了用图模型做协同过滤的方法,包括SimRank系列算法和马尔科夫链系列算法.现在我们就对SimRank算法在推荐系统的应用做一个总结. 1. SimRank推荐算法的图论基础 SimRank是基于图论的,如果用于推荐算法,则它假设用户和物品在空间中形成了一张图.而这张图是一个二部图.所谓二部图就是图中的节点可以分成两个子集,而图中任意一条边的两个端点分别来源于这两个子集.一个二部图的例子如下图.从图中也可以看出,二部图的子集内部没有边连接.对于我们的推荐算法中的…
很幸运找到这篇文件,解了燃眉之急. http://blog.csdn.net/pan12jian/article/details/38703569 mahout做推荐的输入只能是long类型,但在某些网站中,存储的数据不是long类型,是string类型. 现在的手机APP,每个手机都有其device_id,也是string类型.如果能以string类型作为uid,即使用户不注册,不登录.只要采用device_id作为其uid,也可以做精准推荐. mahout提供了一个接口,能把string转为…
1.基于用户的协同过滤推荐算法 利用相似度矩阵*评分矩阵得到推荐列表 已经推荐过的置零 2.基于物品的协同过滤推荐算法 3.基于内容的推荐 算法思想:给用户推荐和他们之前喜欢的物品在内容上相似的物品 首先在物品特征建模…
#region  根据群ID和用户Id查询 + string QueryQunByUserIdAndQunId(int userId, int qunId)  V1.0 /// <summary>        /// 13.0 根据群ID和用户Id查询        /// </summary>        /// <param name="userId"></param>        /// <param name=&quo…
一.简介 协同过滤算法[Collaborative Filtering Recommendation]算法是最经典.最常用的推荐算法.该算法通过分析用户兴趣,在用户群中找到指定用户的相似用户,综合这些相似用户对某一信息的评价,形成系统关于该指定用户对此信息的喜好程度预测. 二.步骤 1.收集用户偏好. 2.找到相似的用户或物品. 3.计算推荐. 三.用户评分 从用户的行为和偏好中发现规律,并基于此进行推荐,所以收集用户的偏好信息成为系统推荐效果最基础的决定因素. 数据预处理: 1.减噪 因为用户…
ALS矩阵分解 http://blog.csdn.net/oucpowerman/article/details/49847979 http://www.open-open.com/lib/view/open1457672855046.html        一个的打分矩阵 A 可以用两个小矩阵和的乘积来近似,描述一个人的喜好经常是在一个抽象的低维空间上进行的,并不需要把其喜欢的事物一一列出.再抽象一些,把人们的喜好和电影的特征都投到这个低维空间,一个人的喜好映射到了一个低维向量,一个电影的特征…
需要代码联系作者,不做义务咨询. 一.算法实现 基于p-stable分布,并以‘哈希技术分类’中的分层法为使用方法,就产生了E2LSH算法. E2LSH中的哈希函数定义如下: 其中,v为d维原始数据,a为随机变量,由正态分布产生; w为宽度值,因为a∙v+b得到的是一个实数,如果不加以处理,那么起不到桶的效果,w是E2LSH中最重要的参数,调得过大,数据就被划分到一个桶中去了,过小就起不到局部敏感的效果.b使用均匀分布随机产生,均匀分布的范围在[0,w]. 但是这样,得到的结果是(N1,N2,……
转载自:http://blog.fens.me/mahout-recommendation-api/ Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeeper, Avro, Ambari, Chukwa,新增加的项目包括,YARN, Hcatalog, Oozie, Cassandra, Hama, Whirr, Flume, Bigtop, Crunch, Hue等. 从2011年…
原博文出自于: http://blog.fens.me/mahout-recommendation-api/ 感谢! Posted: Oct 21, 2013 Tags: itemCFknnMahoutrecommendationSlope OneTree ClusterUserCF Comments: 35 Comments Mahout推荐算法API详解 Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, M…
Mahout推荐的ItemBased 一.   算法原理 (一)    基本的 下面的例子,参见图评分矩阵:表现user,归类为item. 图(1) 该算法的原理: 1.  计算Item之间的相似度. 2.  对用户U做推荐 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXVleWVkZWFp/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt=&q…
Mahout推荐之ItemBased 一.   算法原理 (一)    基本原理 如下图评分矩阵所示:行为user,列为item. 图(1) 该算法的原理: 1.  计算Item之间的相似度. 2.  对用户U做推荐 公式(一) Map tmp ; Map tmp1 ; for(item a  in userRatedItems){ rate  =userforItemRate(a) ListsimItem =getSimItem(a); For(Jin simItem){ Item b =j;…
Mahout推荐算法API详解 Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeeper, Avro, Ambari, Chukwa,新增加的项目包括,YARN, Hcatalog, Oozie, Cassandra, Hama, Whirr, Flume, Bigtop, Crunch, Hue等. 从2011年开始,中国进入大数据风起云涌的时代,以Hadoop为代表的家族软件,占…
阅读导读: 1.mahout单机内存算法实现和分布式算法实现分别存在哪些问题? 2.算法评判标准有哪些? 3.什么会影响算法的评分? 1. Mahout推荐算法介绍 Mahout推荐算法,从数据处理能力上,能够划分为2类: 单机内存算法实现 基于Hadoop的分步式算法实现 1). 单机内存算法实现   单机内存算法实现:就是在单机下执行的算法,是由cf.taste项目实现的,像我们熟悉的UserCF,ItemCF都支持单机内存执行.而且參数能够灵活配置.单机算法的基本实例.请參考文章:用Mav…
Mahout推荐算法之SlopOne 一.       算法原理 有别于基于用户的协同过滤和基于item的协同过滤,SlopeOne采用简单的线性模型估计用户对item的评分.如下图,估计UserB对ItemJ的偏好 图(1) 在真实情况下,该方法有如下几个问题: 1.  为什么要选择UserA计算? 2.  对大量稀疏的情况如何处理,而这种情况是最为普遍的. 图(2) Item1和item2的相似度:((5-3)+(3-4))/2=0.5 Item1和Item3的相似度:(5-2)/1=3 L…
通过Mahout构建推荐系统时,假设我们须要添�某些过滤规则(比方:item的创建时间在一年以内),则须要用到IDRescorer接口,该接口源代码例如以下: package org.apache.mahout.cf.taste.recommender; /**  * <p>  * A {@link Rescorer} which operates on {@code long} primitive IDs, rather than arbitrary {@link Object}s.  * …
先来看一下使用流程: 1)拿到DataModel 2)定义相似度计算模型 PearsonCorrelationSimilarity 3)定义用户邻域计算模型 NearestNUserNeighborhood 4)定义推荐模型 GenericUserBasedRecommender 5)进行推荐 @Test public void testHowMany() throws Exception { DataModel dataModel = getDataModel( new long[] {1,…
技术:easyUI.jQuery.Spring.Struts.Hibernate.Mahout.MySQL 本Libimseti推荐系统使用数据.代码參考<Mahout in action>第五章内容. 系统能够从这里下载:libimesti推荐系统 或  http://pan.baidu.com/s/1nvzqWcx (包括源代码). 1. 系统部署 1.1 数据库 (1)改动Configuration文件夹中的db.properties中的数据库配置: (2)从http://pan.bai…
来源:http://www.ibm.com/developerworks/cn/java/j-lo-mahout/index.html 推荐引擎简介 推荐引擎利用特殊的信息过滤(IF,Information Filtering)技术,将不同的内容(例如电影.音乐.书籍.新闻.图片.网页等)推荐给可能感兴趣的用户.通常情况下,推荐引擎的实现是通过将用户 的个人喜好与特定的参考特征进行比较,并试图预测用户对一些未评分项目的喜好程度.参考特征的选取可能是从项目本身的信息中提取的,或是基于用户所在的社…
基于 Apache Mahout 构建社会化推荐引擎 http://www.ibm.com/developerworks/cn/views/java/libraryview.jsp 推荐引擎利用特殊的信息过滤(IF,Information Filtering)技术,将不同的内容(例如电影.音乐.书籍.新闻.图片.网页等)推荐给可能感兴趣的用户.通常情况下,推荐引擎的实现是通过将用户 的个人喜好与特定的参考特征进行比较,并试图预测用户对一些未评分项目的喜好程度.参考特征的选取可能是从项目本身的信息…
基于Mahout的电影推荐系统 1.Mahout 简介 Apache Mahout 是 Apache Software Foundation(ASF) 旗下的一个开源项目,提供一些可扩展的机器学习领域经典算法的实现,旨在帮助开发人员更加方便快捷地创建智能应用程序.经典算法包括聚类.分类.协同过滤.进化编程等等,并且,在 Mahout 的最近版本中还加入了对 Apache Hadoop 的支持,使这些算法可以更高效的运行在云计算环境中. 2.Taste简介 Taste 是 Apache Mahou…
Mahout学习(主要学习内容是Mahout中推荐部分的ItemCF.UserCF.Hadoop集群部署运行) 1.Mahout是什么? Mahout是一个算法库,集成了很多算法. Apache Mahout 是 Apache Software Foundation(ASF)旗下的一个开源项目,提供一些可扩展的机器学习领域经典算法的实现,旨在帮助开发人员更加方便快捷地创建智能应用程序. Mahout项目目前已经有了多个公共发行版本.Mahout包含许多实现,包括聚类.分类.推荐过滤.频繁子项挖掘…
一.推荐系统概述 为了解决信息过载和用户无明确需求的问题,找到用户感兴趣的物品,才有了个性化推荐系统.其实,解决信息过载的问题,代表性的解决方案是分类目录和搜索引擎,如hao123,电商首页的分类目录以及百度,360搜索等.不过分类目录和搜索引擎只能解决用户主动查找信息的需求,即用户知道自己想要什么,并不能解决用户没用明确需求很随便的问题.经典语录是:你想吃什么,随便!面对这种很随便又得罪不起的用户(女友和上帝),只能通过分析用户的历史行为给用户的兴趣建模,从而主动给用户推荐能够满足他们兴趣和需…
PS: Redis 在博客的 JavaEE PS:大数据实时执行3个特性,Storm,kafka,Redis PS:比如在系统中,1s中有大量的请求涌入的系统中,那么请求就存入数据库就挂了,这就需要到了Redis缓存了. day22 ------------------------ PS: 主要讲诉了日志采集系统,后台又代码,可以参看 flume +kafka+ storm +redis package mahout; import org.apache.mahout.cf.taste.impl…
目录 Part VI. Advanced Analytics and Machine Learning Advanced Analytics and Machine Learning Overview 1.A Short Primer on Advanced Analytics 2.Spark's Advanced Analytics Toolkit 3.ML in Action 4.部署模式 Preprocessing and Feature Engineering 1.Formatting…