洛谷P2258 子矩阵】的更多相关文章

P2258 子矩阵 题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第 2 . 4行和第 2 . 4 .5 列交叉位置的元素得到一个 \(2 \times 3\)的子矩阵如右图所示. 9 3 3 3 9 9 4 8 7 4 1 7 4 6 6 6 8 5 6 9 7 4 5 6 1 的其中一个\(2 \times 3\)的子矩阵是 4 7 4 8 6 9 相邻的元素:矩阵中的某个元素与…
P2258 子矩阵 题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第2.4行和第2.4.5列交叉位置的元素得到一个2*3的子矩阵如右图所示. 9 3 3 3 9 9 4 8 7 4 1 7 4 6 6 6 8 5 6 9 7 4 5 6 1 的其中一个2*3的子矩阵是 4 7 4 8 6 9 相邻的元素:矩阵中的某个元素与其上下左右四个元素(如果存在的话)是相邻的. 矩阵的分值:矩阵…
题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第2.4行和第2.4.5列交叉位置的元素得到一个2*3的子矩阵如右图所示. 9 3 3 3 9 9 4 8 7 4 1 7 4 6 6 6 8 5 6 9 7 4 5 6 1 的其中一个2*3的子矩阵是 4 7 4 8 6 9 相邻的元素:矩阵中的某个元素与其上下左右四个元素(如果存在的话)是相邻的. 矩阵的分值:矩阵中每一对相邻元素之差…
题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第2.4行和第2.4.5列交叉位置的元素得到一个2*3的子矩阵如右图所示. 9 3 3 3 9 9 4 8 7 4 1 7 4 6 6 6 8 5 6 9 7 4 5 6 1 的其中一个2*3的子矩阵是 4 7 4 8 6 9 相邻的元素:矩阵中的某个元素与其上下左右四个元素(如果存在的话)是相邻的. 矩阵的分值:矩阵中每一对相邻元素之差…
作者:zifeiy 标签:状态压缩.枚举.动态规划 题目链接:https://www.luogu.org/problem/P2258 这道题目状态压缩是肯定的,我们需要用二进制来枚举状态. 江湖上有一句话,叫做"暴力出奇迹",所以我一开始是暴力枚举的. 暴力枚举50分 下面是我暴力枚举(骗分50)的思路(后续动态规划的思想也是建立在此基础之上,所以最好还是了解一下). 首先用二进制枚举所有选择r行的行的排列,然后用二进制枚举所有选择c列的排列,然后计算选中了这r行c列的结果,与最终答案…
题目传送 表示一开始也是一脸懵逼,虽然想到了DP,但面对多变的状态不知从何转移及怎么合理记录状态.之(借鉴大佬思路)后,豁然开朗,于是在AC后分享一下题解. 发现数据范围出奇地小,不过越是小的数据范围,算法的灵活性就越大.小数据对我们各个算法的组合及时间复杂度的掌握要求很高.面对二维的最优化选择,其实我们可以先通过搜索枚举出行的所有选择,存到一个数组team中,然后在行已经确认的情况下,跑一遍一维的DP:设dp[j][i]为在前j列选择i列的最优情况(为了方便,要求第i选择的列一定是第j列).则…
NOIP 2014普及组 T4(话说一道PJ组的题就把我卡了一个多小时诶) 这道题在我看第一次的时候是没有意识到这是一道DP题的,然后就摁着DFS敲了好长时间,结果敲了一个TLE 这是DP!!! 下面开始进入正题 题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第22.44行和第22.44.55列交叉位置的元素得到一个2 \times 32×3的子矩阵如右图所示. 9 3 3 3 9…
子矩阵 题目链接 搜索枚举选了哪几行,将DP降为一个一维的问题, 先预处理出w[i]表示该列上下元素差的绝对值之和 v[i][j]为第i列和第j列对应元素之差的绝对值之和 f[i][j]表示前j列中选i列,且最后一列为j的最小消耗 f[i][j]=min(f[i][j],f[i-1][j-k]+v[j-k][j]+w[j]); #include<iostream> #include<cstring> #include<cstdio> #include<cmath&…
应该很容易想到暴力骗分. 我们考虑暴力\(dfs\)枚举所有行的选择,列的选择,每次跑一遍记下分值即可. 时间复杂度:\(O(C_n^r \times C_m^c \times r \times c)\) 可以水过\(60pts\). #include<bits/stdc++.h> #define INF 1000000007 using namespace std; inline int read(){ register int s=0,f=1; register char ch=getch…
BZOJ原题链接 洛谷原题链接 注意该题的子矩阵可以是空矩阵,即可以不选,答案的下界为\(0\). 设\(f[i][j][k]\)表示前\(i\)行选择了\(j\)个子矩阵,选择的方式为\(k\)时的最大分值之和. \(k = 0\)表示该行不选数. \(k = 1\)表示该行只选左边的数. \(k = 2\)表示该行只选右边的数. \(k = 3\)表示该行选两个数,但分别属于两个子矩阵. \(k = 4\)表示该行选两个数,属于一个子矩阵. 设一行中左边的数为\(x\),右边的数为\(y\)…