题目链接 洛谷P4630 题解 看了一下部分分,觉得树的部分很可做,就相当于求一个点对路径长之和的东西,考虑一下能不能转化到一般图来? 一般图要转为树,就使用圆方树呗 思考一下发现,两点之间经过的点双,点双内所有点一定都可以作为中介点 那么我们将方点赋值为点双大小,为了去重,剩余点赋值\(-1\) 答案就是任意两点间权值和之和 我们只需枚举每个点被经过多少次,这就很容易计算了 复杂度\(O(n)\) #include<algorithm> #include<iostream> #i…
圆方树大致理解:将每个点双看做一个新建的点(方点),该点双内的所有点(圆点)都向新建的点连边,最后形成一棵树,可以给点赋予点权,用以解决相关路径问题. 在本题中,方点点权赋值为该点双的大小,因为两个点双最多有一个交点,将圆点赋为-1来去重,先用tarjan()构建出圆方树,在跑一遍dfs,dfs枚举的是作为c的点,维护sz2[ ](圆点个数,因为s和f只能是圆点),利用乘法原理累加答案即可. 注意代码中累加答案是要乘2,(s和f可以交换). 1 #include<bits/stdc++.h>…
题目大意:给一张无向图,求三元组$(u,v,w)$满足$u->v->w$为简单路径,求个数 题解:圆方树,缩点后$DP$,因为同一个点双中的点一定地位相同 卡点:1.$father$数组开小,一不小心就续到了下面的$bool$的$vis$数组中,然后就挂成$98$,因为发现去掉没用的$vis$数组变成$86$,才找到问题 C++ Code: #include <cstdio> #include <cstring> #define maxn 100010 #define…
思路 圆方树,一个点双中的所有点都可以被经过,所以给圆点赋值-1,方点赋值为圆点个数,统计圆点两两之间的路径权值和即可 代码 #include <cstdio> #include <algorithm> #include <cstring> #include <stack> using namespace std; int v2[100100*4],fir2[100100*2],nxt2[100100*4],cnt2; void addedge2(int u…
[APIO2018] Duathlon 铁人两项 LG传送门 圆方树+简单DP. 不会圆方树的话可以看看我的另一篇文章. 考虑暴力怎么写,枚举两个点,答案加上两个点之间的点的个数. 看到题面中的一句话: 考虑到安全因素,选择的路径经过同一个点至多一次. 换句话说就是简单路径,用(广义)圆方树的基本条件已经满足,可以把问题变到树上:令方点的权值为所在点双的大小,圆点会被算重所以点权为\(-1\),统计任意两点间的点权和就好了.直接做是\(n ^ 2\)的,考虑枚举每一个点看会产生多少贡献,对答案的…
luogu 题目描述 比特镇的路网由 \(m\) 条双向道路连接的 \(n\) 个交叉路口组成. 最近,比特镇获得了一场铁人两项锦标赛的主办权.这场比赛共有两段赛程:选手先完成一段长跑赛程,然后骑自行车完成第二段赛程. 比赛的路线要按照如下方法规划: \(1\).先选择三个两两互不相同的路口 \(s, c\) 和 \(f\) ,分别作为比赛的起点.切换点(运动员在长跑到达这个点后,骑自行车前往终点).终点. \(2\).选择一条从 \(s\) 出发,经过 \(c\) 最终到达 \(f\) 的路径…
不经过重点,考虑点双 点双,考虑圆方树 两个点s,t,中间路径上,所有点双里的点都可以经过,特别地,s,t作为割点的时候,不能往后走,也就是不能经过身后的方点 也就是,(s,t)经过树上路径上的所有圆点和方点 把方点权值设为点双大小-2,圆点权值设为1,(s,t)路径上的权值就是c的选择方案数(不算s,t自己权值) 问题转化为:求树上任意点对的距离和,(x,y),(y,x)算两次 在转化为考虑每个点的贡献,树形DP即可 注意: 1.可能不连通 2.sz统计的是圆点的个数 3.最后乘2 #incl…
首先对于给出的图建立圆方树,然后我们分类讨论每一个点作为中间的中转站出现的情况有多少种,累积到 \(ans\) 中. 对于圆点:在任意两个子树内分别选出一个节点都是合法的. 对于方点:连接向方点的点均为处于一个双联通分量中的点,彼此之间两两可.所以若我们让这个双联通分量上的一个点作为中转站,在其他任意的两棵子树内挑出两个点来都是合法的.这样乍一看好像是 \(n^{2}\) 的统计方法,我们不妨改变一下:因为答案是累加起来的,我们分别考虑每一棵子树对于答案造成的贡献.这一棵子树中的点可以和另一棵子…
题目大意: 无向图上找三个点 a b c使存在一条从a到b经过c的路径 求取这三个点的方案数 思路: 建立圆方树 这个圆方树保证没有两个圆点相连或两个方点相连 对于每个节点x 设该节点为路径的中间节点 则a c要么同在一个子树内 要么一个在子树内另一个在子树外 最后对答案<<1 对于每个方点设val[x] 为该点所连圆点的个数 每个方点按照两种情况算出答案之后 用圆点减去算重的部分 #include<iostream> #include<cstdio> #include…
[APIO2018]铁人两项(圆方树,动态规划) 题面 UOJ 洛谷 BZOJ 题解 嘤嘤嘤,APIO的时候把一个组合数写成阶乘了,然后这题的70多分没拿到 首先一棵树是很容易做的,随意指定起点终点就只能在两点路径上选择第三点.那么考虑过中点的路径个数,就可以很方便的\(dp\)计算了. 对于仙人掌而言,把环全部缩成点,转成树,缩起来的点额外定义一个点权,同样可以直接在树上做\(dp\),额外考虑环自身内部的贡献. 那么对于一般图而言,构建圆方树,那么选定起点和终点后,还是只能选择两点路径之间的…
[APIO2018]铁人两项 题目描述 大意就是给定一张无向图,询问三元组\((s,c,f)\)中满足\(s\neq c\neq f\)且存在\((s\to c\to f)\)的简单路径(每个点最多经过一次)的数量. \(1\leq n,\leq 10^5,1\leq m\leq 2*10^5\) 我们考虑枚举\(s,f\)然后计算中间\(c\)的数量.我们发现对于一张图上统计两点之间路径上的点数量很好做.于是我们考虑建圆方树. 我们将圆点的权值定为\(-1\),将方点的权值定为与其直接相连的圆…
题目描述 比特镇的路网由 \(m\) 条双向道路连接的 \(n\) 个交叉路口组成. 最近,比特镇获得了一场铁人两项锦标赛的主办权.这场比赛共有两段赛程:选手先完成一段长跑赛程,然后骑自行车完成第二段赛程. 比赛的路线要按照如下方法规划: 1.先选择三个两两互不相同的路口 \(s\) ,\(c\) 和 \(f\) ,分别作为比赛的起点.切换点(运动员在长跑到达这个点后,骑自行车前往终点).终点. 2.选择一条从 \(s\) 出发,经过 \(c\) 最终到达 \(f\) 的路径.考虑到安全因素,选…
传送门 又学会了一个新东西好开心呢~ 思路 显然,假如枚举了起始点\(x\)和终止点\(y\),中转点就必须在它们之间的简单路径上. 不知为何想到了圆方树,可以发现,如果把方点的权值记为双联通分量的大小,圆点权值记为-1,那么\(x \rightarrow y\)的答案就是树上\(x\rightarrow y\)的路径权值和. 直接枚举\(O(n^2)\),点分治\(O(n\log n)\),考虑每个点被经过的次数乘上它的权值即可\(O(n)\). 注意图可能不连通. 代码 #include<b…
Description ​ 给你一张\(~n~\)个点\(~m~\)条边的无向图,求有多少个三元组\(~(x, ~y, ~z)~\)满足存在一条从\(~x~\)到\(~z~\)并且经过\(~y~\)的路径.保证两点之间最多只有一条边连接. Solution ​ 考虑对这张图建圆方树,每个方点的权值记录该点双的点数,每个圆点的权值为\(-1\).这样先确定\(~x, ~z~\)之后, 其路径上的点权和就是满足条件的\(~y~\)的个数 (因为一个圆点的贡献会算进两个相邻的方点中,所以每个圆点的权值…
正题 题目链接:https://www.luogu.com.cn/problem/P4630 题目大意 \(n\)个点\(m\)条边的一张无向图,求有多少对三元组\((s,c,f)\)满足\(s\neq f\neq t\)且存在一条从\(s\)到\(f\)的简单路径经过\(c\) 解题思路 一个比较显然的结论是在一个点双中的三个点\((a,b,c)\)那么必然存在一条\(a\)到\(b\)的简单路径经过\(c\).因为一定存在两条不交的\(a->c\)和\(c->b\)的路径,那么如果一条\(…
是不是$ vector$存图非常慢啊...... 题意:求数对$(x,y,z)$的数量使得存在一条$x$到$z$的路径上经过$y$,要求$x,y,z$两两不同  LOJ #2587 $ Solution:$ 首先考虑一棵树的情况怎么做 我们枚举每一个点计算贡献,贡献即为经过这个点的链的数量 只要求出这个点的所有子树大小就可以算出这个贡献 然后发现如果某条链经过某个点双联通分量 这个连通分量里的所有点都会被这条链的端点对计算贡献 我们直接构建圆方树,令方点的权值为这个点双连通分量的大小 由于每个圆…
题目:https://loj.ac/problem/2587 先写了 47 分暴力. 对于 n<=50 的部分, n3 枚举三个点,把图的圆方树建出来,合法条件是 c 是 s -> f 路径上的方点连出去的某个圆点.像找 LCA 那样走一遍 s -> f 路径即可. 对于树的部分,考虑一条路径对答案的贡献是其边数减 1 ,所以对于每条边求一下它在多少路径中,就是 siz[ v ] * ( n-siz[ v ] ) ( v 是它指向的点),然后答案再减去 \( C_n^2 \) 即可. 注…
题解 学习了圆方树!(其实是复习了Tarjan求点双) 我又双叒叕忘记了tarjan点双一个最重要,最重要的事情! 就是--假如low[v] >= dfn[u],我们就找到了一个点双,开始建立方点,但是,虽然这个点双包括点u,然而这个u啊,它很花心可能会在很多个点双里!首先u,不能被弹出去 其次呢,在栈里,u和这个点双其他的点,在栈里不一定是连续的一段,一般都是 u (一堆别的点) 点双里的点--,所以我们弹出到v,就结束这个点双,然后手动把u加进去 然后我们再来看这道题,我们枚举两个点,起点和…
主要卡在一个结论上..关于点双有一个常用结论,也经常作为在圆方树/简单路径上的良好性质,对于任意点双内互不相同的三点$s,c,t$,都存在简单路径$s\to c\to t$,证明不会.可以参见clz博客..我就是跟着他学的 然后就好办了,转化为树上两点计经过点双内所有点个数,然后赋权后变为统计两两圆点对的路径权值和,这个就是一个树形DP,统计每个点作为圆点或者方点被所有路径经过多少次,加入答案.. 还是比较裸的,因为重点还在于这个很多题都出现到的点双的简单路径的性质.. #include<ios…
原文链接www.cnblogs.com/zhouzhendong/p/UOJ416.html 前言 完了完了SB选手Tarjan写挂. 题解 考虑先Tarjan缩个点双建个圆方树. 然后发现,确定起点和终点后,中间点的可选方案数就是   这条路径上的所有点双 size 之和-2 . 定义原点表示原图中的点,方点表示圆方树中新加入的点. 这个东西可以转化为路径上的方点度数之和减去原点个数. 定义点 x 的权值 d[x] ,当 x 为圆点时 d[x] = -1,否则 d[x] 等于 x 的度数. 设…
圆方树orz,参见猫的课件(apio和wc的)以及这里那里 #include <iostream> #include <cstdio> using namespace std; typedef long long ll; int n, m, uu, vv, oea[100005], loo[100005], dfn[100005], idx, sta[100005]; int siz[200005], val[200005], tot, sze, din, ont, cnt, he…
题目链接 LOJ 洛谷P4630 先对这张图建圆方树. 对于S->T这条(些)路径,其对答案的贡献为可能经过的所有点数,那么我们把方点权值设为联通分量的大小,可以直接去求树上路径权值和. 因为两方点之间的圆点会计算两次,所以圆点权值设为-1就好了. 那么现在有 \(n^2\) 个点对,求每个点对之间的路径上点的权值和. 对每个点计算一下被计算次数就可以了.这个路径次数计算注意考虑全.. 另外点对是圆点间的,所以方点初始sz[]为0,圆点的sz[]才是1. 方点其实建一条边就可以. LOJ为什么找…
 [APIO2018] 铁人两项 题目大意: 给定一张图,问有多少三元组(a,b,c)(a,b,c 互不相等)满足存在一条点不重复的以a为起点,经过b,终点为c的路径 如果你不会圆方树 ----------------------- 放弃是最好的选择(先学了再来吧) 如果你会圆方树 考虑\((a,...,c)\) 1.如果a,c不同属一个点双,不难发现答案为路上经过的(点双的节点个数)的和减去割点数 2.如果a,c同属一个点双,那么答案为本点双的节点个数 - 2 自然地想到方点的权值为内含节点个…
题目链接: [APIO2018]铁人两项 对于点双连通分量有一个性质:在同一个点双里的三个点$a,b,c$,一定存在一条从$a$到$c$的路径经过$b$且经过的点只被经过一次. 那么我们建出原图的圆方树,枚举中间点$b$,一对合法的$a,c$需要使这两个点位于与$b$直接相连的方点的不同子树中.树形$DP$,对圆点和方点分别统计答案即可. #include<set> #include<map> #include<queue> #include<stack>…
把这个图缩成圆方树,把方点的权值设成-1,圆点的权值设成点双的size,算 经过这个点的路径的数量*这个点的点权 的和即是答案. #include <iostream> #include <cstdio> #include <cstring> using namespace std; ; struct Edge{ int to[N],nxt[N],head[N],ecnt; Edge(){ecnt=;} void add(int bg,int ed) {nxt[++ec…
qwq纪念AC450 一开始想这个题想复杂了. 首先,正解的做法是比较麻烦的. qwqq 那么就不如来一点暴力的东西,看到平面上点的距离的题,不难想到\(KD-Tree\) 我们用类似平面最近点对那个题一样的维护方式,对于一个子树内部,分别维护每一个维度的最大值和最小值,还有半径的最大值. 然后\(sort\)一遍,从半径大到小依次\(query\),每次\(query\)的时候,对于当前点,合法的条件是他和目标点的距离要小于等于两个圆的半径的和. 那么对于子树的估价函数,我们默认如果当前目标点…
一道很好的圆方树入门题 感谢PinkRabbit巨佬的博客,讲的太好啦 首先是构建圆方树的代码,也比较好想好记 void tarjan(int u) { dfn[u] = low[u] = ++dfn_clk; //初始化dfn和low数组 stk[++tp] = u; //把u加入栈中 for(int i = head[u]; i; i = e[i].next) { int v = e[i].to; if(!dfn[v]) { //v还未访问 tarjan(v); //先访问 low[u] =…
\(\mathcal{Description}\)   Link.   给定一个 \(n\) 个点 \(m\) 条边的无向图(不保证联通),求有序三元点对 \((s,c,f)\) 的个数,满足 \(s,c,f\) 互不相同,且存在一条从 \(s\) 到 \(c\) 再到 \(f\) 的简单路径.   \(n\le10^5\),\(m\le2\times10^5\). \(\mathcal{Solution}\)   首先考虑这样一个问题,若 \(s,c,f\) 在同一点双中,是否一定满足条件.…
QWQ神仙题啊(据说是今年第一次出现圆方树的地方) 首先根据题目,我们就是求对于每一个路径\((s,t)\)他的贡献就是两个点之间的点数,但是图上问题我并没有办法很好的解决... 这时候考虑圆方树,我们将圆方树建出来之后, 我们令方点的权值是他所连接的圆点之和,圆点的权值是\(-1\). 这里之所以让圆点的贡献是-1,是为了方便表示路径的贡献(不然貌似比较复杂). 如果我们这么赋值的话,那么一个条路经的贡献就应该是点权之和. QWQ可惜枚举两个端点是\(O(n^2)\)复杂度的 那么这时候,我们…
过了14个月再重新看这题,发现圆方树从来就没有写过.然后写了这题发现自己APIO2018打铁的原因竟然是没开long long,将树的部分的O(n)写挂了(爆int),毕竟去年APIO时我啥都不会,连tarjan都写不来,活该打铁. 不扯了写题解. 首先建立圆方树,然后任意枚举圆点s和f,然后c可以在这两个点路径中每个点双的点挑选.所以令圆点值为-1,方点值为点双大小,然后选法是圆点路径权值和.然后计算每个点出现多少次,可以对每个连通块树形DP求解,然后这道题就没了. #include<bits…