信息熵 Information Theory】的更多相关文章

信息论(Information Theory)是概率论与数理统计的一个分枝.用于信息处理.信息熵.通信系统.数据传输.率失真理论.密码学.信噪比.数据压缩和相关课题.本文主要罗列一些基于熵的概念及其意义,注意本文罗列的所有 $\log$ 都是以 2 为底的. 信息熵 在物理界中熵是描述事物无序性的参数,熵越大则越混乱.类似的在信息论中熵表示随机变量的不确定程度,给定随机变量 X ,其取值 $x_1, x_2, \cdots ,x_m$ ,则信息熵为: \[H(X) =\sum_{i=1}^{m}…
Chapter 1.6 : Information Theory     Chapter 1.6 : Information Theory Christopher M. Bishop, PRML, Chapter 1 Introdcution 1. Information h(x) Given a random variable and we ask how much information is received when we observe a specific value for thi…
This will be a series of post about Tree model and relevant ensemble method, including but not limited to Random Forest, AdaBoost, Gradient Boosting and xgboost. So I will start with some basic of Information Theory, which is an importance piece in T…
https://en.wikipedia.org/wiki/Claude_Shannon In 1948, the promised memorandum appeared as "A Mathematical Theory of Communication," an article in two parts in the July and October issues of the Bell System Technical Journal. This work focuses on…
Better intuition for information theory 2019-12-01 21:21:33 Source: https://www.blackhc.net/blog/2019/better-intuition-for-information-theory/ The following blog post is based on Yeung’s beautiful paper “A new outlook on Shannon’s information measure…
这个时代已经是多学科相互渗透的时代,纯粹的传统学科在没落,新兴的交叉学科在不断兴起. life science neurosciences statistics computer science information theory 我的问题很简单: 一个细胞里到底保存了多少信息,复制.转录.翻译过程中传递了多少信息? 神经突触传递信息的上限是多少? 想回答这些问题就必须要学习信息论! 什么是信息? 两个同样的光碟里保存的信息是一样的吗? 人和信息的关系是什么?假设所有人都不存在了,信息还存在吗…
熵 给定一个离散变量,我们观察它的每一个取值所包含的信息量的大小,因此,我们用来表示信息量的大小,概率分布为.当p(x)=1时,说明这个事件一定会发生,因此,它带给我的信息为0.(因为一定会发生,毫无悬念) 如果x和y独立无关,那么: 他们之间的关系为: (p(x)=1时,h(x)=0,负号为了确保h(x)为正,这里取2为底是随机的,可以取其他的正数(除了1)) 因此,对于所有x的取值,它的熵有: 注:,当遇到时, 这里插一段信息熵的解释: ———————————————————————————…
信息熵用于描述信源的不确定度, 即用数学语言描述概率与信息冗余度的关系. C. E. Shannon 在 1948 年发表的论文A Mathematical Theory of Communication中指出, 任何信息都存在冗余, 冗余大小与信息中每个符号(数字, 字母或单词)的出现概率或者说不确定性有关. Shannon 借鉴了热力学的概念, 把信息中排除了冗余后的平均信息量称为信息熵, 并给出了计算信息熵的数学表达式. 一个信源发送出什么符号是不确定的, 衡量它可以根据其出现的概率来度量…
参考: 模式识别与机器学习(一):概率论.决策论.信息论 Decision Theory - Principles and Approaches 英文图书 What are the best beginners books about decision theory? - Quora Statistical Decision Theory 了解一些AI方面的前沿知识!!! 待续~…
Deep Learning中会接触到的关于Info Theory的一些基本概念.…
熵的概念在统计学习与机器学习中真是很重要,熵的介绍在这里:信息熵 Information Theory .今天的主题是最大熵模型(Maximum Entropy Model,以下简称MaxEnt),MaxEnt 是概率模型学习中一个准则,其思想为:在学习概率模型时,所有可能的模型中熵最大的模型是最好的模型:若概率模型需要满足一些约束,则最大熵原理就是在满足已知约束的条件集合中选择熵最大模型.最大熵原理指出,对一个随机事件的概率分布进行预测时,预测应当满足全部已知的约束,而对未知的情况不要做任何主…
Knowledge Discovery in Databases (KDD) is an active and important research area with the promise for a high payoff in many business and scientific applications. One of the main tasks in KDD is classification. A particular efficient method for classif…
Information Entropy Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3827 Description Information Theory is one of the most popular courses in Marjar University. In this course, there is an impo…
I - Information Entropy Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu Submit Status Description Information Theory is one of the most popular courses in Marjar University. In this course, there is an important chapter abo…
Information Entropy Time Limit: 2 Seconds      Memory Limit: 131072 KB      Special Judge Information Theory is one of the most popular courses in Marjar University. In this course, there is an important chapter about information entropy. Entropy is…
水 Information Entropy Time Limit: 2 Seconds      Memory Limit: 65536 KB      Special Judge Information Theory is one of the most popular courses in Marjar University. In this course, there is an important chapter about information entropy. Entropy is…
Information Entropy Time Limit: 2 Seconds      Memory Limit: 65536 KB      Special Judge Information Theory is one of the most popular courses in Marjar University. In this course, there is an important chapter about information entropy. Entropy is t…
Information Entropy Time Limit: 2 Seconds      Memory Limit: 65536 KB      Special Judge Information Theory is one of the most popular courses in Marjar University. In this course, there is an important chapter about information entropy. Entropy is t…
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do? problemId=5381 Information Theory is one of the most popular courses in Marjar University. In this course, there is an important chapter about information entropy. Entropy is the average amount o…
声明:本博客整理自博友@zhouyong计算广告与机器学习-技术共享平台,尊重原创,欢迎感兴趣的博友查看原文. 写在前面 记得在<Pattern Recognition And Machine Learning>一书中的开头有讲到:“概率论.决策论.信息论3个重要工具贯穿着<PRML>整本书,虽然看起来令人生畏…”.确实如此,其实这3大理论在机器学习的每一种技法中,或多或少都会出现其身影(不局限在概率模型). <PRML>书中原话:”This chapter also…
Decision Tree:Analysis 大家有没有玩过猜猜看(Twenty Questions)的游戏?我在心里想一件物体,你可以用一些问题来确定我心里想的这个物体:如是不是植物?是否会飞?能游泳不?当你问完这些问题后,你就能得到这个物体的特征,然后猜出我心里想象的那个物体,看是否正确. 这个游戏很简单,但是蕴含的思想却是质朴的.每个问题都会将范围减少,直到特征显现,内蕴的思想就是Decision Tree算法.判定树(Decision Tree)算法是机器学习中很重要的一种算法,有文章声…
什么是模式识别(Pattern Recognition)? 按照Bishop的定义,模式识别就是用机器学习的算法从数据中挖掘出有用的pattern. 人们很早就开始学习如何从大量的数据中发现隐藏在背后的pattern.例如,16世纪的Kepler从他的老师Tycho搜集的大量有关于行星运动的数据中发现了天体运行的规律,并直接导致了牛顿经典力学的诞生.然而,这种依赖于人类经验的.启发式的模式识别过程很难复制到其他的领域中.例如手写数字的识别.这就需要机器学习的技术了.(顺便提一下,开普勒定律在物理…
这篇文章是David MacKay利用信息论,来对快排.堆排的本质差异导致的性能差异进行的比较. 信息论是非常强大的,它并不只是一个用来分析理论最优决策的工具. 从信息论的角度来分析算法效率是一件很有趣的事,它给我们分析排序算法带来了一种新的思路. 运用了信息论的概念,我们很容易理解为什么快排的速度那么快,以及它的缺陷在哪里. 由于个人能力不足,对于本文的理解可能还是有点偏差. 而且因为翻译的困难,这篇译文有很多地方并没有翻译出来,还是使用了原文的句子. 所以建议大家还是阅读原文Heapsort…
决策树(Decision Tree)是用于分类和预测的主要技术,它着眼于从一组无规则的事例推理出决策树表示形式的分类规则,采用自顶向下的递归方式,在决策树的内部节点进行属性值的比较,并根据不同属性判断从该节点向下分支,在决策树的叶节点得到结论.因此,从根节点到叶节点就对应着一条合理规则,整棵树就对应着一组表达式规则.基于决策树算法的一个最大的优点是它在学习过程中不需要使用者了解很多背景知识,只要训练事例能够用属性即结论的方式表达出来,就能使用该算法进行学习.决策树算法在很多方面都有应用,如决策树…
内容学习于 ApacheCN github 定义: 分类决策树模型是一种描述对实例进行分类的树形结构.决策树由结点(node)和有向边(directed edge)组成.结点有两种类型:内部结点(internal node)和叶结点(leaf node).内部结点表示一个特征或属性(features),叶结点表示一个类(labels). 用决策树对需要测试的实例进行分类:从根节点开始,对实例的某一特征进行测试,根据测试结果,将实例分配到其子结点:这时,每一个子结点对应着该特征的一个取值.如此递归…
决策树---ID3算法   决策树: 以天气数据库的训练数据为例. Outlook Temperature Humidity Windy PlayGolf? sunny 85 85 FALSE no sunny 80 90 TRUE no overcast 83 86 FALSE yes rainy 70 96 FALSE yes rainy 68 80 FALSE yes rainy 65 70 TRUE no overcast 64 65 TRUE yes sunny 72 95 FALSE…
作为最早关注人工智能技术的媒体,机器之心在编译国外技术博客.论文.专家观点等内容上已经积累了超过两年多的经验.期间,从无到有,机器之心的编译团队一直在积累专业词汇.虽然有很多的文章因为专业性我们没能尽善尽美的编译为中文呈现给大家,但我们一直在进步.一直在积累.一直在提高自己的专业性.两年来,机器之心编译团队整理过翻译词汇对照表「红宝书」,编辑个人也整理过类似的词典.而我们也从机器之心读者留言中发现,有些人工智能专业词汇没有统一的翻译标准,这可能是因地区.跨专业等等原因造成的.举个例子,DeepM…
对多分类问题(multi-class),通常使用 cross-entropy 作为 loss function.cross entropy 最早是信息论(information theory)中的概念,由信息熵(information entropy,与压缩比率有关)变化而来,然后被用到很多地方,包括通信,纠错码,博弈论和机器学习等.交叉熵与信息熵的关系请见:机器学习基础(六)-- 交叉熵代价函数(cross-entropy error). 在运作对 loss function 的定义时,y 是…