[ML] 工程师使用 Keras 的步骤指引】的更多相关文章

一位ML工程师构建深度神经网络的实用技巧 https://mp.weixin.qq.com/s/2gKYtona0Z6szsjaj8c9Vg 作者| Matt H/Daniel R 译者| 婉清 编辑| Jane 出品| AI 科技大本营 [导读]在经历成千上万个小时机器学习训练时间后,计算机并不是唯一学到很多东西的角色,作为开发者和训练者的我们也犯了很多错误,修复了许多错误,从而积累了很多经验.在本文中,作者基于自己的经验(主要基于 TensorFlow)提出了一些训练神经网络的建议,还结合了…
作者:黄永刚 机器学习规则:ML工程最佳实践 本文旨在指引具有机器学习基础知识的工程师等人,更好的从机器学习的实践中收益.介绍一些应用机器学习需要遵循的规则,类似于Google C++ 风格指南等流行的编程指南.如果你已经上过机器学习相关课程或者正在从事相关的工作,那你已经满足阅读本文所需的背景知识了. Before Machine Learning Rule: #1: 不要害怕开发没有应用机器学习技术的产品 Rule: #2: 设计评价指标并设立优先级 Rule: #3: 先使用复杂的启发式规…
在本系列的最后,我们将介绍另一种方法,即利用一个预先训练好的CNN来解决我们一直在研究的硬币识别问题. 在这里,我们看一下转移学习,调整预定义的CNN,并使用Model Builder训练我们的硬币识别模型. 我们将使用ML.NET代替Keras.NET.为什么不使用Keras.NET呢?尽管Keras.NET非常简单,易于学习,虽然它包含前面提到的预定义模型,但它的简单性使我们无法自定义CNN架构来适应我们的问题. ML.NET是一个微软的免费机器学习框架,旨在使用C#和F#进行开发.最重要的…
说明:系统是unbuntu14.04LTS,32位的操作系统,以前安装了python3.4,现在想要安装theano和keras.步骤如下: 1,安装pip sudo apt-get install python3-setuptools sudo easy_install3 pip 2,安装g++ sudo apt-get install g++ 采用上述命令安装g++,安装完成后可用g++ -version查看是否安装完成.注意,如果没有安装g++,在import theano时会出现以下错误…
本份Java工程师的终极书单只在专业的Java技术博客–天天编码上发布,没有授权任何网站与个人转载. 坚持阅读好书是学习Java技术的好方式.但是,市面上与Java技术相关的书籍可谓数不胜数,如何从这些质量参差不齐的众多书中选择出优秀的书籍就成为了Java程序员面对的第一个问题.同时,每个Java程序员的技术水平和知识结构往往差异很大,这导致不同的Java程序员阅读同一本技术书的体验与感受又截然不同. 针对前面提到的Java程序员面对如何选择优秀书籍的两个主要问题,笔者结合自身的阅读Java书籍…
Sequential 模型 API 在阅读这片文档前,请先阅读 Keras Sequential 模型指引. Sequential 模型方法 compile compile(optimizer, loss=None, metrics=None, loss_weights=None, sample_weight_mode=None, weighted_metrics=None, target_tensors=None) 用于配置训练模型. 参数 optimizer: 字符串(优化器名)或者优化器对…
ML.NET 0.6版本提供了几项令人兴奋的新增功能: 用于构建和使用机器学习模型的新API 我们主要关注的是发布用于构建和使用模型的新ML.NET API的第一次迭代.这些新的,更灵活的API支持新任务和代码工作流,这是以前的LearningPipelineAPI 无法实现的.我们开始弃用当前的LearningPipelineAPI. 这是一项重大改变,旨在使您的机器学习更轻松,更强大.我们希望通过GitHub的公开讨论来反馈您的反馈,以帮助塑造长期的ML.NET API,以最大限度地提高您的…
原文地址:https://devblogs.microsoft.com/dotnet/announcing-ml-net-1-0/ 我们很高兴地宣布今天发布ML.NET 1.0.  ML.NET是一个免费的,跨平台的开源机器学习框架,旨在将机器学习(ML)的强大功能引入.NET应用程序. https://github.com/dotnet/machinelearning 入门@ http://dot.net/ml ML.NET允许您使用C#或F#训练,构建和发布自定义机器学习模型,用于情景分析,…
本文以两篇官方文档为基础来学习TensorFlow如何进行分布式训练,借此进入Strategy世界.…
[源码解析] TensorFlow 分布式 DistributedStrategy 之基础篇 目录 [源码解析] TensorFlow 分布式 DistributedStrategy 之基础篇 1. StrategyBase 1.1 初始化 1.2 使用 1.3 CTL 1.4 Scope 1.4.1 使用 1.4.2 功能 1.4.3 Scope 范围 1.5 StrategyExtendedV2 1.5.1 locality 1.5.2 如何更新 1.6 继承关系 2. 读取数据 2.1 直…