1. 引言 10月11-17日,万众期待的国际计算机视觉大会 ICCV 2021 (International Conference on Computer Vision) 在线上如期举行,受到全球计算机视觉领域研究者的广泛关注. 今年阿里云多媒体 AI 团队(由阿里云视频云和达摩院视觉团队组成)参加了 MFR 口罩人物身份鉴别全球挑战赛,并在总共5个赛道中,一举拿下1个冠军.1个亚军和2个季军,展现了我们在人物身份鉴别领域深厚的技术积淀和业界领先的技术优势. 2. 竞赛介绍 MFR口罩人物身份…
一.通用缓存接口 二.本地缓存 三.分布式缓存 四.缓存"及时"过期问题 五.二级缓存 缓存是最直接有效提升系统性能的手段之一.个人认为用好用对缓存是优秀程序员的必备基本素质. 本文结合实际开发经验,从简单概念原理和代码入手,一步一步搭建一个简单的二级缓存系统. 一.通用缓存接口 1.缓存基础算法 (1).FIFO(First In First Out),先进先出,和OS里的FIFO思路相同,如果一个数据最先进入缓存中,当缓存满的时候,应当把最先进入缓存的数据给移除掉.(2).LFU(…
​  前言  本文介绍一种新的tokens-to-token Vision Transformer(T2T-ViT),T2T-ViT将原始ViT的参数数量和MAC减少了一半,同时在ImageNet上从头开始训练时实现了3.0%以上的改进.通过直接在ImageNet上进行训练,它的性能也优于ResNet,达到了与MobileNet相当的性能. 本文来自公众号CV技术指南的论文分享系列 关注公众号CV技术指南 ,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读. ​ 论文:Tokens-to-…
基于SwinTransformer的目标检测训练模型学习总结 一.简要介绍 Swin Transformer是2021年提出的,是一种基于Transformer的一种深度学习网络结构,在目标检测.实例分割等计算机视觉任务上均取得了SOTA的性能.同时这篇论文也获得了ICCV2021年的Best Paper. 1.1 Transformer的关键里程碑 Tranformer: 在2017年6月,仅基于注意力机制的Transformer首次由谷歌提出,应用于NLP自然语言处理的任务上表现出了良好的性…
论文地址:带轴向注意的多尺度时域频率卷积网络语音增强 论文代码:https://github.com/echocatzh/MTFAA-Net 引用:Zhang G, Yu L, Wang C, et al. Multi-scale temporal frequency convolutional network with axial attention for speech enhancement[C]//ICASSP 2022-2022 IEEE International Conferenc…
一.概述 书写sql是我们程序猿在开发中必不可少的技能,优秀的sql语句,执行起来吊炸天,性能杠杠的.差劲的sql,不仅使查询效率降低,维护起来也十分不便.一切都是为了性能,一切都是为了业务,你觉得你的sql技能如何?所有的伟大来自于点滴的积累,不积跬步无以至千里,让sql性能飞起来吧! 二.sql初探 1.常见sql写法注意点 (1)字符类型建议采用varchar/nvarchar数据类型 char char是定长的,也就是当你输入的字符小于你指定的数目时,char(8),你输入的字符小于8时…
Docker最核心的特性之一,就是能够将任何应用包括Hadoop打包到Docker镜像中.这篇教程介绍了利用Docker在单机上快速搭建多节点 Hadoop集群的详细步骤.作者在发现目前的Hadoop on Docker项目所存在的问题之后,开发了接近最小化的Hadoop镜像,并且支持快速搭建任意节点数的Hadoop集群. 一. 项目简介 GitHub: kiwanlau/hadoop-cluster-docker 直接用机器搭建Hadoop集群是一个相当痛苦的过程,尤其对初学者来说.他们还没开…
关于UITable的优化: 1.最常用的就是不重复生成单元格,很常见,很实用: 2.使用不透明的视图可以提高渲染速度,xCode中默认TableCell的背景就是不透明的: 3.如果有必要减少视图中的条目,本文中设置textLabel,detialTextLabel,imageView,a ccessoryType:   4.更新条目的时候不要整体更新,更新选中的即可,建议reloadRowsAtIndexPaths,而不是使用reloadData:     提前计算并缓存好高度(布局),因为h…
来自http://www.aichengxu.com/view/2426102 摘要 目标跟踪是计算机视觉大量应用中的重要组成部分之一.近年来,尽管在分享源码和数据集方面的努力已经取得了许多进展,开发一套库和标准用于评估当前最先进的跟踪算法仍然是极其重要的.在简单回顾近年来在线目标跟踪的研究进展后,我们以多种评价标准进行了大量的实验,用于研究这些算法的性能.为了便于性能评估和分析,测试图片序列分别被标注了不同的特性.通过定量分析结果,我们得出了实现鲁棒性跟踪的有效方法,并给出了目标跟踪领域潜在的…
根据网络上的优化方法进行了总括.并未仔细进行语言组织.正在这些优化方法进行学习,见另一篇文章 提高app流畅度 1.cell子控件创建写在 initWithStyle:reuseIdentifier 2.后台计算高度,布局.放在集合中下次使用.(计算高度是件很麻烦的事,分散计算,减少计算次数) 3.有一些显示的内容有富文本,特别是从HTML 转化为属性字符串时候. 解决方案,后台提前转化需要的属性字符串,然后缓存起来避免重复转化带来的CPU性能消耗.可以参考DTCoreText从HTML转化属性…