Python缺失值处理实现】的更多相关文章

一.缺失值的处理方法 由于各种各样的原因,真实世界中的许多数据集都包含缺失数据,这些数据经常被编码成空格.nans或者是其他的占位符.但是这样的数据集并不能被scikit - learn算法兼容,因为大多数的学习算法都会默认数组中的元素都是数值,因此素偶有的元素都有自己的代表意义. 使用不完整的数据集的一个基本策略就是舍弃掉整行或者整列包含缺失值的数值,但是这样处理会浪费大量有价值的数据.下面是处理缺失值的常用方法: 1.忽略元组 当缺少类别标签时通常这样做(假定挖掘任务涉及分类时),除非元组有…
method='bfill'可实现按下方值填充…
一.Python 数据框就是典型的关系型数据库的数据存储形式,每一行是一条记录,每一列是一个属性,最终构成表格的形式,这是数据科学家必须熟悉的最典型的数据结构. 1.构建数据框 import pandas as pd data = {'year':[2010, 2011, 2012, 2010, 2011, 2012, 2010, 2011, 2012], 'team':['FCBarcelona', 'FCBarcelona', 'FCBarcelona', 'RMadrid', 'RMadr…
在拿到一份数据准备做挖掘建模之前,首先需要进行初步的数据探索性分析(你愿意花十分钟系统了解数据分析方法吗?),对数据探索性分析之后要先进行一系列的数据预处理步骤.因为拿到的原始数据存在不完整.不一致.有异常的数据,而这些“错误”数据会严重影响到数据挖掘建模的执行效率甚至导致挖掘结果出现偏差,因此首先要数据清洗.数据清洗完成之后接着进行或者同时进行数据集成.转换.归一化等一系列处理,该过程就是数据预处理.一方面是提高数据的质量,另一方面可以让数据更好的适应特定的挖掘模型,在实际工作中该部分的内容可…
  python连接oracle -- qlalchemy import cx_Oracle as co import pandas as pd from sqlalchemy import create_engine sql_select = ''' ...''' db = create_engine('oracle://qmcb:qmcb@localhost:1521/tqmcbdb') #test_data = pd.read_excel("data/tmp001.xlsx")…
python pandas判断缺失值一般采用 isnull(),然而生成的却是所有数据的true/false矩阵,对于庞大的数据dataframe,很难一眼看出来哪个数据缺失,一共有多少个缺失数据,缺失数据的位置. 首先对于存在缺失值的数据,如下所示 import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(10,6)) # Make a few areas have NaN values df.iloc[1…
python数据预处理之缺失值简单处理:https://blog.csdn.net/Amy_mm/article/details/79799629 该博客总结比较详细,感谢博主. 我们在进行模型训练时,不可避免的会遇到某些特征出现空值的情况,下面整理了几种填充空值的方法 1. 用固定值填充 对于特征值缺失的一种常见的方法就是可以用固定值来填充,例如0,9999, -9999, 例如下面对灰度分这个特征缺失值全部填充为-99 data['灰度分'] = data['灰度分'].fillna('-9…
目录 1. 数据文件 2. 读数据 3. 查找数据 4. 替换数据 4.1 一对一替换 4.2 多对一替换 4.3 多对多替换 5. 插入数据 6. 删除数据 6.1 删除列 6.2 删除行 7. 处理缺失值 7.1 数据准备 7.2 查看缺失值 7.3 删除缺失值 7.4 缺失值的填充 8. 处理重复值 8.1 删除重复行 8.2 删除某一列中的重复值 8.3 获取唯一值 9 排序数据 9.1 用sort_values()函数排序数据 9.2 用rank()函数获取数据的排名 10 rank(…