[NIPS2017]“深度高斯模型”可能为深度学习的可解释性提供概率形式的理论指导?亚马逊机器学习专家最新报告 专知 [导读]在NIPS 2017上,亚马逊机器学习专家Neil Lawrence在12月4日在长滩现场进行了一场“基于高斯模型的深度概率模型”的演讲报告.这场报告Neil Lawrence形象化地讲解了使用高斯过程来建模深度网络,并且深入浅出地讲解了什么是机器学习,不确定性的含义以及深度神经网络和高斯过程的一些关联等等,PPT内容干货很多,是学习机器学习概率理论的好文,后续专知会持续…
聚类(1)——混合高斯模型 Gaussian Mixture Model http://blog.csdn.net/jwh_bupt/article/details/7663885 聚类系列: 聚类(序)----监督学习与无监督学习 聚类(1)----混合高斯模型 Gaussian Mixture Model 聚类(2)----层次聚类 Hierarchical Clustering 聚类(3)----谱聚类 Spectral Clustering -----------------------…
模型汇总24 - 深度学习中Attention Mechanism详细介绍:原理.分类及应用 lqfarmer 深度学习研究员.欢迎扫描头像二维码,获取更多精彩内容. 946 人赞同了该文章 Attention是一种用于提升基于RNN(LSTM或GRU)的Encoder + Decoder模型的效果的的机制(Mechanism),一般称为Attention Mechanism.Attention Mechanism目前非常流行,广泛应用于机器翻译.语音识别.图像标注(Image Caption)…
一步步教你轻松学朴素贝叶斯深度篇3(白宁超   2018年9月4日14:18:14) 导读:朴素贝叶斯模型是机器学习常用的模型算法之一,其在文本分类方面简单易行,且取得不错的分类效果.所以很受欢迎,对于朴素贝叶斯的学习,本文首先介绍理论知识即朴素贝叶斯相关概念和公式推导,为了加深理解,采用一个维基百科上面性别分类例子进行形式化描述.然后通过编程实现朴素贝叶斯分类算法,并在屏蔽社区言论.垃圾邮件.个人广告中获取区域倾向等几个方面进行应用,包括创建数据集.数据预处理.词集模型和词袋模型.朴素贝叶斯模…
本文由云+社区发表 作者:腾讯技术工程 导语:最近几年来,深度学习在推荐系统领域中取得了不少成果,相比传统的推荐方法,深度学习有着自己独到的优势.我们团队在QQ看点的图文推荐中也尝试了一些深度学习方法,积累了一些经验.本文主要介绍了一种用于推荐系统召回模块的深度学习方法,其出处是Google在2016年发表于RecSys的一篇用于YouTube视频推荐的论文.我们在该论文的基础上做了一些修改,并做了线上AB测试,与传统的协同召回做对比,点击率等指标提升明显. 为了系统的完整性,在介绍主模型前,本…
本文记录几个在广告和推荐里面rank阶段常用的模型.广告领域机器学习问题的输入其实很大程度了影响了模型的选择,因为输入一般维度非常高,稀疏,同时包含连续性特征和离散型特征.模型即使到现在DeepFM类的方法,其实也都很简单.模型的发展主要体现于对特征的充分挖掘上,比如利用低阶和高阶特征.尝试自动学习交叉特征而非手动.尝试更精准地实现高阶特征(bounded-degree). 广告相关的领域最早大行其道的模型当属LR模型,原因就是LR模型简单,可解释性好,拓展性高,精心细调之后模型效果也会非常好.…
摘要:我们提出了一种不依赖模型的元学习算法,它与任何梯度下降训练的模型兼容,适用于各种不同的学习问题,包括分类.回归和强化学习.元学习的目标是在各种学习任务上训练一个模型,这样它只需要少量的训练样本就可以解决新的学习任务.在我们的方法中,模型的参数被显式地训练,使得少量的梯度步骤和少量的来自新任务的训练数据能够在该任务上产生良好的泛化性能.实际上,我们的方法训练模型易于微调.结果表明,该方法在两个few shot图像分类基准上都取得了最新的性能,在少镜头回归上取得了良好的效果,并加速了基于神经网…
深度生成模型 1.玻尔兹曼机…
主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:10:56 今天的主要内容有k-means.混合高斯模型. EM算法.对于k-means大家都不会陌生,非常经典的一个聚类算法,已经50多年了,关于clustering推荐一篇不错的survey: Data clustering: 50 years beyond K-means.k-means表达的思想非常经典,就是对于复杂问题分解成两步不停的迭代进行逼近,并且每一步相对于前一步…
#include "stdio.h" #include "string.h" #include "iostream" #include "opencv/cv.h" #include "opencv/cxcore.h" #include "opencv/cvaux.h" #include "opencv/highgui.h" #include "opencv/…