阿里太注重原理了:阿里问kafka如何实现高并发存储-如何找到一条需要消费的数据,kafka用了稀疏索引的方式,使用了二分查找法,其实很多索引都是二分查找法  二分查找法的时间复杂度:O(logn) redis,kafka,B+树的底层都采用了二分查找法 参考:二分查找法 redis的索引底层的 跳表原理 实现 聊聊Mysql索引和redis跳表 ---redis的跳表原理 时间复杂度O(logn)(阿里) 参考:二分查找法 mysql索引原理:一步步分析为什么B+树适合作为索引的结构 以及索引…
福哥答案2020-05-25: 应用场景:解耦.异步.削峰.区别如下:特性 ActiveMQ RabbitMQ RocketMQ Kafka单机吞吐量 万级,比 RocketMQ.Kafka 低一个数量级 同 ActiveMQ 10 万级,支撑高吞吐 10 万级,高吞吐,一般配合大数据类的系统来进行实时数据计算.日志采集等场景topic 数量对吞吐量的影响 topic 可以达到几百/几千的级别,吞吐量会有较小幅度的下降,这是 RocketMQ 的一大优势,在同等机器下,可以支撑大量的 topic…
  日志平台运行一段时间,发现日志有部分丢失,通过检查日志,发现有两个问题导致数据丢失,一个是遇到空行后,日志停止收集,还有就是kafka监控offsets时变小,通过分析代码,找到如下方法: 空行问题:   在系统稳定运行一段时间之后,发现了一个致命性的bug就是在遇到空行时,无法自动跳过,导致识别为文件结束,再次读取还是空行,跳入了死循环 解决办法:   解决的办法也非常简单,就是增加对文件大小与当前行数的比较,两者相等则是到达文件末尾,否则继续读取下一行,直到文件末尾 源码: offset…
如果想了解 redis 与Memcache的区别参考:Redis和Memcache的区别总结 阿里的面试官问问我为何redis 使用跳表做索引,却不是用B+树做索引 因为B+树的原理是 叶子节点存储数据,非叶子节点存储索引,B+树的每个节点可以存储多个关键字,它将节点大小设置为磁盘页的大小,充分利用了磁盘预读的功能.每次读取磁盘页时就会读取一整个节点,每个叶子节点还有指向前后节点的指针,为的是最大限度的降低磁盘的IO;因为数据在内存中读取耗费的时间是从磁盘的IO读取的百万分之一 而Redis是…
1.引言   达达创立于2014年5月,业务覆盖全国37个城市,拥有130万注册众包配送员,日均配送百万单,是全国领先的最后三公里物流配送平台. 达达的业务模式与滴滴以及Uber很相似,以众包的方式利用社会闲散人力资源,解决O2O最后三公里即时性配送难题(2016年4月,达达已经与京东到家合并). 达达的业务组成简单直接——商家下单.配送员接单和配送,也正因为理解起来简单,使得达达的业务量在短时间能实现爆发式增长.而支撑业务快速增长的背后,正是达达技术团队持续不断的快速技术迭代的结果,本文正好借…
单机的redis几乎不太可能说QPS超过10万+,一般在几万. 除非一些特殊情况,比如你的机器性能特别好,配置特别高,物理机,维护做的特别好,而且你的整体的操作不是太复杂. Redis通过主从架构,实现读写分离,主节点负责写,并将数据同步给其他从节点,从节点负责读,从而实现高并发. Redis高并发的同时,还需要容纳大量的数据:一主多从,每个实例都容纳了完整的数据,比如redis主就10G的内存量,其实你就最对只能容纳10g的数据量.如果你的缓存要容纳的数据量很大,达到了几十g,甚至几百g,或者…
目录 redis如何通过读写分离来承载读请求QPS超过10万+ redis replication以及master持久化对主从架构的安全意义 redis主从复制原理.断点续传.无磁盘化复制.过期key处理 redis replication的完整流运行程和原理的再次深入剖析 redis主从架构下如何才能做到99.99%的高可用性? redis哨兵架构的相关基础知识的讲解1.哨兵的介绍 redis哨兵主备切换的数据丢失问题:异步复制.集群脑裂 怎么保证redis是高并发以及高可用的?\09_red…
如果你用redis缓存技术的话,肯定要考虑如何用redis来加多台机器,保证redis是高并发的,还有就是如何让Redis保证自己不是挂掉以后就直接死掉了. redis高并发:主从架构,一主多从,一般来说,很多项目其实就足够了,单主用来写入数据,单机几万QPS,多从用来查询数据,多个从实例可以提供每秒10万的QPS. redis高并发的同时,还需要容纳大量的数据:一主多从,每个实例都容纳了完整的数据,比如redis主就10G的内存量,其实你就最对只能容纳10g的数据量.如果你的缓存要容纳的数据量…
在项目中使用HttpClient可能是很普遍,尤其在当下微服务大火形势下,如果服务之间是http调用就少不了跟http客户端找交道.由于项目用户规模不同以及应用场景不同,很多时候可能不需要特别处理也.然而在一些高并发场景下必须要做一些优化. 项目是快递公司的快件轨迹查询项目,目前平均每小时调用量千万级别.轨迹查询以Oracle为主要数据源,Mongodb为备用,当Oracle不可用时,数据源切换到Mongodb.今年菜鸟团队加入后,主要数据迁移到了阿里云上,以Hbase为主要存储.其中Hbase…
疯狂创客圈 Java 高并发[ 亿级流量聊天室实战]实战系列之15 [博客园总入口 ] 前言 前言 疯狂创客圈(笔者尼恩创建的高并发研习社群)Springcloud 高并发系列文章,将为大家介绍三个版本的 高并发秒杀: 一.版本1 :springcloud + zookeeper 秒杀 二.版本2 :springcloud + redis 分布式锁秒杀 三.版本3 :springcloud + Nginx + Lua 高性能版本秒杀 以及有关Springcloud 几篇核心.重要的文章: 一.S…
高并发高可.O2O.微服务架构用学习网站 https://www.itkc8.com 非常感谢http://www.cnblogs.com/skyblog/p/5044486.html 关于架构,笔者认为并不是越复杂越好,而是相反,简单就是硬道理也提现在这里.这也是微服务能够流行的原因,看看市场上曾经出现的服务架构:EJB.SCA.Dubbo等等,都比微服务先进,都比微服务功能完善,但它们都没有微服务这么深入民心,就是因为他们过于复杂.简单就是高科技,苹果手机据说专门有个团队研究如何能让用户更加…
redis不支持高并发的瓶颈在哪里? 单机.单机版的redis支持上万到几万的QPS不等. 主要根据你的业务操作的复杂性,redis提供了很多复杂的操作,lua脚本. 2.如果redis要支撑超过10万+()怎么解决? 单机版的redis几乎不可能说QPS超过10万+,除非一些特殊情况,比如说你的机器性能特别好,配置特别高,物理机,维护做的特别好,而且你的整体的操作不是太复杂.可能有超过10万+/ 一般情况下的redis都是在几万. 使用读写分离的架构来进行redis支撑10万+的模式. 读写分…
如果你用redis缓存技术的话,肯定要考虑如何用redis来加多台机器,保证redis是高并发的,还有就是如何让Redis保证自己不是挂掉以后就直接死掉了,redis高可用 redis高并发:主从架构,一主多从,一般来说,很多项目其实就足够了,单主用来写入数据,单机几万QPS,多从用来查询数据,多个从实例可以提供每秒10万的QPS. redis高并发的同时,还需要容纳大量的数据:一主多从,每个实例都容纳了完整的数据,比如redis主就10G的内存量,其实你就最对只能容纳10g的数据量.如果你的缓…
就是如果你用redis缓存技术的话,肯定要考虑如何用redis来加多台机器,保证redis是高并发的,还有就是如何让Redis保证自己不是挂掉以后就直接死掉了,redis高可用 我这里会选用我之前讲解过这一块内容,redis高并发.高可用.缓存一致性 redis高并发:主从架构,一主多从,一般来说,很多项目其实就足够了,单主用来写入数据,单机几万QPS,多从用来查询数据,多个从实例可以提供每秒10万的QPS. redis高并发的同时,还需要容纳大量的数据:一主多从,每个实例都容纳了完整的数据,比…
了不起的Node.js: 将JavaScript进行到底(Web开发首选,实时,跨多服务器,高并发) Guillermo Rauch 编   赵静 译 ISBN 978-7-121-21769-2 2014年1月出版 定价:79.00元 320页 16开 编辑推荐 Node.js是一个由JavaScript书写而成的强大的web开发框架,它让开发强壮的.伸缩性良好的服务端web应用变得更加简单,容易.本书向你展示了什么是Node以及如何让你在项目中使用它.本书包含大量实际应用中的示例程序,证明了…
Java高并发的常见应对方案 一.关于并发我们说的高并发是什么? 在互联网时代,高并发,通常是指,在某个时间点,有很多个访问同时到来. 高并发,通常关心的系统指标与业务指标? QPS:每秒钟查询量,广义的,通常指指每秒请求数 响应时间:从请求发出到收到响应花费的时间,例如:系统处理一个HTTP请求需要100ms,这个100ms就是系统的响应时间 带宽:计算带宽大小需关注两个指标,峰值流量和页面的平均大小 PV:综合浏览量(Page View),即页面浏览量或者点击量,通常关注在24小时内访问的页…
就是如果你用redis缓存技术的话,肯定要考虑如何用redis来加多台机器,保证redis是高并发的,还有就是如何让Redis保证自己不是挂掉以后就直接死掉了,redis高可用 我这里会选用我之前讲解过这一块内容,redis高并发.高可用.缓存一致性 redis高并发:主从架构,一主多从,一般来说,很多项目其实就足够了,单主用来写入数据,单机几万QPS,多从用来查询数据,多个从实例可以提供每秒10万的QPS. redis高并发的同时,还需要容纳大量的数据:一主多从,每个实例都容纳了完整的数据,比…
就是如果你用redis缓存技术的话,肯定要考虑如何用redis来加多台机器,保证redis是高并发的,还有就是如何让Redis保证自己不是挂掉以后就直接死掉了,redis高可用 redis高并发:主从架构,一主多从,一般来说,很多项目其实就足够了,单主用来写入数据,单机几万QPS,多从用来查询数据,多个从实例可以提供每秒10万的QPS. redis高并发的同时,还需要容纳大量的数据:一主多从,每个实例都容纳了完整的数据,比如redis主就10G的内存量,其实你就最多只能容纳10g的数据量.如果你…
Kafka是高吞吐低延迟的高并发.高性能的消息中间件,在大数据领域有极为广泛的运用.配置良好的Kafka集群甚至可以做到每秒几十万.上百万的超高并发写入. 那么Kafka到底是如何做到这么高的吞吐量和性能的呢?这篇文章我们来一点一点说一下. 一.页缓存技术 + 磁盘顺序写 首先Kafka每次接收到数据都会往磁盘上去写,如下图所示: 那么在这里我们不禁有一个疑问了,如果把数据基于磁盘来存储,频繁的往磁盘文件里写数据,这个性能会不会很差?大家肯定都觉得磁盘写性能是极差的. 没错,要是真的跟上面那个图…
返回目录 众所周知 redis量个强大的缓存组件,可以部署在win32和linux环境之上,它有五大存储结构,其中有一种为列表list,它可以实现quene和stack的功能,即队列和堆栈的功能. redis相关文章,可以看我的相关博文<Redis学习笔记~目录>,redis实现消息队列,可以看我的<Redis实现消息队列比MSMQ更方便> node-redis-client相关下载地址为:https://github.com/fictorial/redis-node-client…
1.kafka在高并发的情况下,如何避免消息丢失和消息重复? 消息丢失解决方案: 首先对kafka进行限速, 其次启用重试机制,重试间隔时间设置长一些,最后Kafka设置acks=all,即需要相应的所有处于ISR的分区都确认收到该消息后,才算发送成功 消息重复解决方案: 消息可以使用唯一id标识 生产者(ack=all 代表至少成功发送一次) 消费者 (offset手动提交,业务逻辑成功处理后,提交offset) 落表(主键或者唯一索引的方式,避免重复数据) 业务逻辑处理(选择唯一主键存储到R…
课程简介: 随着互联网的发展,高并发.大数据量的网站要求越来越高.而这些高要求都是基础的技术和细节组合而成的.本课程就从实际案例出发给大家原景重现高并发架构常用技术点及详细演练. 通过该课程的学习,普通的技术人员就可以快速搭建起千万级的高并发大数据网站平台. 亮点一:真实环境还原,课程采用了VM环境重现大网站集群服务器环境,真实环境还原再现. 亮点二:基础实用,细节决定成败,课程内容在演练过程中重点介绍各种细节,保证初级人员快速入门及高级进阶. 亮点三:讲师丰富的海量平台运作经验 讲师tom5多…
Sqlserver 高并发和大数据存储方案 随着用户的日益递增,日活和峰值的暴涨,数据库处理性能面临着巨大的挑战.下面分享下对实际10万+峰值的平台的数据库优化方案.与大家一起讨论,互相学习提高!  案例:游戏平台. 1.解决高并发 当客户端连接数达到峰值的时候,服务端对连接的维护与处理这里暂时不做讨论.当多个写请求到数据库的时候,这时候需要对多张表进行插入,尤其一些表 达到每天千万+的存储,随着时间的积累,传统的同步写入数据的方式显然不可取,经过试验,通过异步插入的方式改善了许多,但与此同时,…
互联网行业是大势所趋,从招聘工资水平即可看出,那么如何提升自我技能,满足互联网行业技能要求?需要以目标为导向,进行技能提升,本文主要针对高并发分布式系统设计.架构(数据一致性)做了分析,祝各位早日走上属于自己的"成金之路".   目录:问题分析概念解读Most Simple原理解读eBey.去哪儿.蘑菇街分布式事务案例分析 参考资料 1.问题解析    要想做架构,必须识别出问题,即是谁的问题,什么问题.明显的,分布式架构解决的是高并发的问题,高并发下服务高可用和数据一致性问题问题:当…
一.概述 Kakfa起初是由LinkedIn公司开发的一个分布式的消息系统,后成为Apache的一部分,它使用Scala编写,以可水平扩展和高吞吐率而被广泛使用.目前越来越多的开源分布式处理系统如Cloudera.Apache Storm.Spark等都支持与Kafka集成.   Kafka凭借着自身的优势,越来越受到互联网企业的青睐,唯品会也采用Kafka作为其内部核心消息引擎之一.Kafka作为一个商业级消息中间件,消息可靠性的重要性可想而知.如何确保消息的精确传输?如何确保消息的准确存储?…
背景说明 近期北京理财频道反馈用来存放股市实时数据的MongoDB数据库写响应请求很慢,难以跟上业务写入速度水平.我们分析了线上现场的情况,发现去年升级到SSD磁盘后,数据持久化的磁盘IO开销已经不是瓶颈.通过日志分析,线上单次写入(更新)请求大多在数十毫秒这个级别,数据库端观察几个主要的db在繁忙时通常有95%以上的时间在进行锁等待.线上数据库并发很高,接近1000个连接,所以怀疑是并发争用表锁导致性能不足. 我们知道MongoDB的mmap存储引擎一直是库/表级锁,因此任何写操作并发越高锁争…
一.从<Apeche Kafka源码剖析>上搬来的概念和图 Kafka网络采用的是Reactor模式,是一种基于事件驱动的模式.熟悉Java编程的读者应该了解Java NIO提供了Reactor模式的API.常见的单线程Java NIO编程模式如图所示. 熟悉NIO编程都应该知道这个Selector,我们可以通过轮询它来获取监听事件,然后通过事件来进行不同的处理,比如OP_ACCEPT连接,OP_READ读取数据等等. 这样简单的处理对于客户端是没什么问题,但对于服务端来说就有些缺点了.在服务…
目录 为什么需要消息队列 1.异步 :一个下单流程,你需要扣积分,扣优惠卷,发短信等,有些耗时又不需要立即处理的事,可以丢到队列里异步处理. 2.削峰 :按平常的流量,服务器刚好可以正常负载.偶尔推出一个优惠活动时,请求量极速上升.由于服务器 Redis,MySQL 承受能力不一样,如果请求全部接收,服务器负载不了会导致宕机.加机器嘛,需要去调整配置,活动结束后用不到了,即麻烦又浪费.这时可以将请求放到队列里,按照服务器的能力去消费. 3.解耦 :一个订单流程,需要扣积分,优惠券,发短信等调用多…
本文来源于caoz梦呓公众号高并发专辑,以图形化.松耦合的方式,对互联网高并发问题做了详细解读与分析,"技术在短期内被高估,而在长期中又被低估",而不同的场景和人员成本又导致了巨头的方案可能并不适合创业公司,那么如何保证高并发问题不成为创业路上的拦路虎,是每一个全栈工程师.资深系统工程师.有理想的程序员必备的技能,希望本文助您寻找属于自己的"成金之路",发亮发光.   目录: 场景及解决方法解读 认识负载 数据跟踪 脑图.caoz大神公众号分享 参考资料   秉承知…
一.什么是高并发在互联网时代,所讲的并发.高并发,通常是指并发访问,也就是在某个时间点,有多少个访问同时到来.比如,百度首页同时有1000个人访问,那么也就是并发为1000.通常一个系统的日PV在千万以上,有可能是一个高并发系统(但有可能不算是一个高并发系统,比如有的公司不走技术路线,全靠机器堆...因为有钱任性!)二.高并发,我们具体应该关心什么?QPS:每秒请求或者查询的数量,在互联网领域,指的是每秒相应请求数(指HTTP请求).吞吐量:单位时间内处理的请求数(通常由QPS于并发数决定).响…