5157: [Tjoi2014]上升子序列 题目:传送门 题解: 学一下nlogn的树状数组求最长上生子序列就ok(%爆大佬) 离散化之后,用一个数组记录一下,直接树状数组做 吐槽:妈耶...一开始不会lower_bound 的蒟蒻用手打二分离散化...结果去重了...然后屁颠屁颠的学了lower_bound(很好用!) 代码: #include<cstdio> #include<cstring> #include<cstdlib> #include<cmath&…
题目描述 求一个数列本质不同的至少含有两个元素的上升子序列数目模10^9+7的结果. 题解 树状数组 傻逼题,离散化后直接使用树状数组统计即可.由于要求本质不同,因此一个数要减去它前一次出现时的贡献(即以它上一次出现的位置为最后一个元素的上升子序列数目)统计到答案中. 由于要包含至少两个元素,因此还需要减掉不同数的数目. 时间复杂度 $O(n\log n)$ #include <cstdio> #include <algorithm> #define N 100010 #defin…
传送门--Luogu 传送门--Codeforces 如果存在长度\(>3\)的等差子序列,那么一定存在长度\(=3\)的等差子序列,所以我们只需要找长度为\(3\)的等差子序列.可以枚举等差子序列的第二个元素\(b\),那么存在长度为\(3\)的等差子序列等价于:可以在\(b\)左边找到一个元素\(a\),在\(b\)右边找到一个元素\(c\),满足\(b - a = c - b\). 对于找到\(ac\)两个元素,一个比较直观的想法是:对\(b\)左边和右边的所有元素各建一个bitset\(…
等差子序列 Time Limit: 3 Sec  Memory Limit: 259 MBSubmit: 1919  Solved: 713[Submit][Status][Discuss] Description 给一个1到N的排列{Ai},询问是否存在1<=p1<p2<p3<p4<p5<…<pLen<=N (Len>=3), 使得Ap1,Ap2,Ap3,…ApLen是一个等差序列.   Input 输入的第一行包含一个整数T,表示组数. 下接T组数…
[BZOJ2124]等差子序列 Description 给一个1到N的排列{Ai},询问是否存在1<=p1<p2<p3<p4<p5<…<pLen<=N (Len>=3), 使得Ap1,Ap2,Ap3,…ApLen是一个等差序列. Input 输入的第一行包含一个整数T,表示组数. 下接T组数据,每组第一行一个整数N,每组第二行为一个1到N的排列,数字两两之间用空格隔开. N<=10000,T<=7 Output 对于每组数据,如果存在一个等…
Problem Description 给定K个整数的序列{ N1, N2, ..., NK },其任意连续子序列可表示为{ Ni, Ni+1, ..., Nj },其中 1 <= i <= j <= K.最大连续子序列是所有连续子序列中元素和最大的一个, 例如给定序列{ -2, 11, -4, 13, -5, -2 },其最大连续子序列为{ 11, -4, 13 },最大和 为20. 在今年的数据结构考卷中,要求编写程序得到最大和,现在增加一个要求,即还需要输出该 子序列的第一个和最后…
题意:n个圆柱形蛋糕,给你半径 r 和高度 h,一个蛋糕只能放在一个体积比它小而且序号小于它的蛋糕上面,问你这样形成的上升序列中,体积和最大是多少 分析:根据他们的体积进行离散化,然后建树状数组,按照序号进行循环,每次查询体积比它小的蛋糕形成的最大体积 注:因为是按照序号进行循环,所以序号一定是严格小于它的,时间复杂度O(nlogn) #include <iostream> #include <cstdio> #include <algorithm> using nam…
题目链接:hdu 5773 The All-purpose Zero 官方题解:0可以转化成任意整数,包括负数,显然求LIS时尽量把0都放进去必定是正确的. 因此我们可以把0拿出来,对剩下的做O(nlogn)的LIS,统计结果的时候再算上0的数量. 为了保证严格递增,我们可以将每个权值S[i]减去i前面0的个数,再做LIS,就能保证结果是严格递增的. 个人看法:对于显然把所以0放进去部分我解释一下: 如果0位于最长上升子序列两边,这两个零要加进去是显然的 如果有一个0夹于最长上升子序列之间,那么…
给定一个序列,初始为空.现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置.每插入一个数字,我们都想知道此时最长上升子序列长度是多少? 由于序列是顺序插入的,所以当前插入的数字对之前的数字形成的最长上升子序列没有任何影响,所以只需要计算出当前的这个数字结尾的上升子序列长度. 由于$dp[i]=max(dp[j])+1(j<i)$,所以可以用线段树维护. 这样就需要预先计算出来这个序列的最后的状态,考虑从n到1倒着算,二分这个数字出现的位置. 因此总时间复杂度为$O(nlogn…
能从iii走到所有跑道 相当于 能从iii走到111和nnn. 边反向后就相当于 能从111和nnn走到iii. 为了方便叙述,把111~nnn叫做x坐标,111~(m+1)(m+1)(m+1)叫做y坐标. 然后我们将图上下翻转(yyy坐标)后,能从111走到iii的话一定经过i−1i-1i−1条向右的边,且这些边的yyy坐标不下降. 那么我们设fl[i]fl[i]fl[i]表示从111走到iii最小加边数量,那么有fl[i]=i−1−LISfl[i]=i-1-LISfl[i]=i−1−LIS这…