k-meas非监督聚类分析】的更多相关文章

实验名称: k-meas非监督聚类分析   一.实验目的和要求 目的: 加深对非监督学习的理解和认识 掌握聚类方法K-Means算法的设计方法   要求:     根据聚类数据,采用k-Means聚类方法画出聚类中心 二.实验环境.内容和方法 环境:windows 7,python2.6 ,Eclipse,Pydev 内容: 1)   非监督学习的理论基础   2)   动态聚类分析的思想和理论依据  3)   聚类算法的评价指标   三.实验基本原理 K-means算法是很典型的基于距离的聚类…
接着看讲义,接下来这章应该是Self-Taught Learning and Unsupervised Feature Learning. 含义: 从字面上不难理解其意思.这里的self-taught learning指的是用非监督的方法提取特征,然后用监督方法进行分类.比如用稀疏自编码+softmax regression. 对于非监督特征学习,有两种类型,一类是self-taught learning,一类是semi-supervised learning.看他们的定义不如看讲义中给出的那个…
1. 聚类分析 聚类分析(cluster analysis)是一组将研究对象分为相对同质的群组(clusters)的统计分析技术 ---->> 将观测对象的群体按照相似性和相异性进行不同群组的划分,划分后每个群组内部各对象相似度很高,而不同群组之间的对象彼此相异度很高. *** 回归.分类.聚类的区别 : 有监督学习 --->> 回归,分类    /   无监督学习  --->>聚类 回归 -->>产生连续结果,可用于预测 分类 -->>产生连续…
PCA是一种非监督学习算法,它能够在保留大多数有用信息的情况下,有效降低数据纬度. 它主要应用在以下三个方面: 1. 提升算法速度 2. 压缩数据,减小内存.硬盘空间的消耗 3. 图示化数据,将高纬数据映射到2维或3维 总而言之,PCA干的事情就是完成一个将原始的n维数据转化到k维的映射.其中,k<n 它的核心算法如下: 1. 将数据均一化 x' = [x-mean(x)] / range(x) 2. 计算它的协方差矩阵 即:Sigma = 1/m * x' * x 3. 进行svd分解,计算特…
1. 前言 本文介绍一种无监督的机器翻译的模型.无监督机器翻译最早是<UNSUPERVISED NEURAL MACHINE TRANSLATION>提出.这个模型主要的特点,无需使用平行语料库,使用去噪和回译的步骤构建NMT系统. 2018年Facebook人工智能实验室再次公布了有关无监督神经网络翻译的最新模型<Phrase-Based & Neural Unsupervised Machine Translation>,相当于用 10 万个参考译文训练过的监督模型.&…
由于异常数据的两个特征(少且不同: few and different) 异常数据只占很少量; 异常数据特征值和正常数据差别很大. iTree的构成过程如下: l  随机选择一个属性Attr: l  随机选择该属性的一个值Value: l  根据Attr对每条记录进行分类,把Attr小于Value的记录放在左女儿,把大于等于Value的记录放在右孩子: l  然后递归的构造左女儿和右女儿,直到满足以下条件: l  传入的数据集只有一条记录或者多条一样的记录: l  树的高度达到了限定高度: iT…
以下是对<学习OpenCV>一书知识框架的简单梳理 转自:http://blog.chinaunix.net/uid-8402201-id-2899695.html 一.基础操作      1. 数据类型 数据结构了解       图像相关:cvArr  cvMat IplImage       数据数组的维数, 与数据的通道数 见P46 (76) 2. 常见的矩阵操作熟悉      3. 数据的保存和读取 4. 图像的加载和显示 5. 视频的操作 6. 内存与序列 a. 内存存储器     …
1. 聚类分析仅根据在数据中发现的描述对象及其关系的信息,将数据对象分组. 其目标是组内的对象相互之间是相似的或者相关的,而不同组中的对象是不同的或者不相关的. 2.聚类分析的重要技术 K均值:K均值是基于原型的.划分的聚类技术.它试图发现用户指定个数k的簇(由质心代表) 邻近度函数 质心 目标函数 曼哈顿距离L1 中位数 最小化对象到其簇质心的L1距离和 平方欧几里得距离L2平方 均值 最小化对象到其簇质心的L2距离的平方和 余弦 均值 最大化对象与其簇质心的余弦相似度和 Bregman散度…
聚类分析是没有给定划分类别的情况下,根据样本相似度进行样本分组的一种方法,是一种非监督的学习算法.聚类的输入是一组未被标记的样本,聚类根据数据自身的距离或相似度划分为若干组,划分的原则是组内距离最小化而组间距离最大化,如下图所示: 常见的聚类分析算法如下: K-Means: K-均值聚类也称为快速聚类法,在最小化误差函数的基础上将数据划分为预定的类数K.该算法原理简单并便于处理大量数据. K-中心点:K-均值算法对孤立点的敏感性,K-中心点算法不采用簇中对象的平均值作为簇中心,而选用簇中离平均值…
K均值算法   上一期介绍了机器学习中的监督式学习,并用了离散回归与神经网络模型算法来解决手写数字的识别问题.今天我们介绍一种机器学习中的非监督式学习算法--K均值算法.   所谓非监督式学习,是一种与监督式学习相对的算法归类,是指样本并没有一个与之对应的"标签".例如上一期中的识别手写数字照片的例子,样本是照片的像素数据,而标签则是照片代表的数字.非监督式学习因为没有这个标签,因此就没有对样本的一个准确的"答案".非监督式学习主要是用来解决样本的聚类问题.   K…