文章:Deep Mutual Learning 出自CVPR2017(18年最佳学生论文) 文章链接:https://arxiv.org/abs/1706.00384 代码链接:https://github.com/YingZhangDUT/Deep-Mutual-Learning…
Deep Meta Learning for Real-Time Visual Tracking based on Target-Specific Feature Space  2018-01-04  15:58:15  写在前面:为什么要看这个paper?这篇 paper 貌似是第一个将 meta-learning 应用到 visual tracking 领域的,取得了速度和精度较好的平衡. Introduction: 我们知道,tracking 中比较重要的就是 target object…
读论文系列:Deep transfer learning person re-identification arxiv 2016 by Mengyue Geng, Yaowei Wang, Tao Xiang, Yonghong Tian Transfer Learning 旧数据训练得到的分类器,在新的数据上重新训练,从而在新数据上取得比较好的表现,新数据与旧数据有相似的地方,但具有不同的分布. Fine tuning一般步骤 这是InceptionV4的图示 移除Softmax分类层 换成与…
Learning Attribute-Specific Representations for Visual Tracking AAAI-2019 Paper:http://faculty.ucmerced.edu/mhyang/papers/aaai2019_tracking.pdf 本文提出一种新的学习思路,即:属性信息 (e.g., illumination changes, occlusion and motion) ,来进行 CNN 特征的学习,以得到更加鲁棒的 tracker.具体来…
总的来说这篇论文提出了ResNet架构,让训练非常深的神经网络(NN)成为了可能. 什么是残差? "残差在数理统计中是指实际观察值与估计值(拟合值)之间的差."如果回归模型正确的话, 我们可以将残差看作误差的观测值."更准确地,假设我们想要找一个 xx,使得 f(x)=bf(x)=b,给定一个 xx 的估计值 x0x0,残差(residual)就是 b−f(x0)b−f(x0),同时,误差就是 x−x0x−x0 为什么需要堆叠更深的NN呢? 论文阐述道 -- 深度神经网络自然…
之前提到,深度神经网络在训练中容易遇到梯度消失/爆炸的问题,这个问题产生的根源详见之前的读书笔记.在 Batch Normalization 中,我们将输入数据由激活函数的收敛区调整到梯度较大的区域,在一定程度上缓解了这种问题.不过,当网络的层数急剧增加时,BP 算法中导数的累乘效应还是很容易让梯度慢慢减小直至消失.这篇文章中介绍的深度残差 (Deep Residual) 学习网络可以说根治了这种问题.下面我按照自己的理解浅浅地水一下 Deep Residual Learning 的基本思想,并…
最近准备用Resnet来解决问题,于是重读Resnet的paper <Deep Residual Learning for Image Recognition>, 这是何恺明在2016-CVPR上发表的一篇paper,在2015年12月已经发布在arXiv上,并且用文中所述的网络在 2015年 的ILSVRC获得分类任务冠军,在2015-COCO detection,segmentation 的冠军. 先说一下新的收获: 结合了caffe的prototxt才知道, F(x) + x ,是 el…
文章:Deep Clustering for Unsupervised Learning of Visual Features 作者:Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze 来自于:Facebook AI Research 发表于:ECCV 2018 目录 •相关链接 •相关方法介绍 •文章出发点 •文章亮点与贡献 •方法细节 •实验结果 •分析与总结 相关链接 论文:https://arxiv.or…
Deep Attentive Tracking via Reciprocative Learning 2018-11-14 13:30:36 Paper: https://arxiv.org/abs/1810.03851 Project page: https://ybsong00.github.io/nips18_tracking/index Code: https://github.com/shipubupt/NIPS2018 是的,我跟好多人一样,被标题中的 “Reciprocative…
导读: 本文为论文<Deep Mixture of Diverse Experts for Large-Scale Visual Recognition>的阅读总结.目的是做大规模图像分类(>1000类),方法是混合多个小深度网络实现更多类的分类.本文从以下五个方面来对论文做个简要整理: 背景:简要介绍与本文方法提出的背景和独特性. 方法:介绍论文使用的大体方法. 细节:介绍论文中方法涉及到的问题及解决方案. 实验:实验结果和简要分析. 总结:论文主要特色和个人体会. 一.背景 1.目标…