目的:让机器学习效果更好,单个不行,群殴啊! Bagging:训练多个分类器取平均 Boosting:从弱学习器开始加强,通过加权来进行训练 (加入一棵树,比原来要强) Stacking:聚合多个分类或回归模型(可以分阶段来做) bagging模型 全称:bootstrap aggregation(说白了就是并行训练一堆分类器) 最典型代表:随机森林 随机:数据采样随机,特征选择随机 森林:很多个决策树并行放在一起 构造树模型 由于二重随机性,使得每个树基本上都不会一样,最终的结果也会不一样.…