一.开场白 做机器学习的对这几个词应该比较熟悉了. 最好是拿到全部数据,那就模型慢慢选,参数慢慢调,一轮一轮迭代,总能取得不错效果. 但是面对新来数据,怎么能利用已经训练好的模型,把新的信息加进去? 所以有很多人,包括我们组,一直想做好在线增量式学习. (1)来一波新数据,(2)抽信息更新模型,(3)扔掉那些数据 用完的数据就扔掉,所以输入数据的顺序,会影响很大. 二.暑假结束了 在暑假的最后一天,发现过去的两周没有被最优利用. 如果我提前知道我的暑假有整整两周,那么我可以把python系统地学…
 作者:ssslinppp       1. 摘要 在默认情况下,持久化类的所有属性会自动映射到数据表的数据列.如果在实际应用中不想持久化保存某些属性,则可以考虑使用@Transient来修饰他们. 2. 程序 来自为知笔记(Wiz)…
温度模拟参数选取 xk 系统状态 实际温度 A 系统矩阵 温度不变,为1 B.uk 状态的控制量 无控制量,为0 Zk 观测值 温度计读数 H 观测矩阵 直接读出,为1 wk 过程噪声 温度变化偏差,常量1e-1 vk 测量噪声 读数误差,常量1e-6 clc;clear all;close all; N = 200; % 迭代次数%w(1)=0;%w=randn(1,N);W = 0; %系统控制矩阵x(1) = 0;A = 1; %温度模拟A为1V = rand(1,N);q1 = std(…
原文地址:http://blog.csdn.net/acdreamers/article/details/44657439 今天来讲BP神经网络,神经网络在机器学习中应用比较广泛,比如函数逼近,模式识别,分类,数据压缩,数据 挖掘等领域.接下来介绍BP神经网络的原理及实现. Contents   1. BP神经网络的认识   2. 隐含层的选取   3. 正向传递子过程   4. 反向传递子过程   5. BP神经网络的注意点   6. BP神经网络的C++实现 1. BP神经网络的认识    …
机器学习 机器学习 概述 什么是机器学习 机器学习是一门能够让编程计算机从数据中学习的计算机科学.一个计算机程序在完成任务T之后,获得经验E,其表现效果为P,如果任务T的性能表现,也就是用以衡量的P,随着E增加而增加,那么这样计算机程序就被称为机器学习系统.自我完善,自我增进,自我适应. 为什么需要机器学习 自动化的升级和维护 解决那些算法过于复杂甚至跟本就没有已知算法的问题 在机器学习的过程中协助人类获得对事物的洞见 机器学习的问题 建模问题所谓机器学习,在形式上可这样理解:在数据对象中通过统…
BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是眼下应用最广泛的神经网络模型之中的一个.BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描写叙述这样的映射关系的数学方程. 一个神经网络的结构示意图例如以下所看到的. BP神经网络模型拓扑结构包括输入层(input).隐层(hide layer)和输出层(output layer).输入层神经元的个数由样本属性的维度决定…
请支持正版图书, 购买链接 下方内容里面很多链接需要我们***,请大家自备梯子,实在不会再请留言,节约彼此时间. 源码在底部,请自行获取,谢谢! 当开始着手进行一个端到端的机器学习项目,大致需要以下几个步骤: 观察大局 分析业务,确定工作方向与性能指标 获得数据 借助框架分析数据 机器学习算法的数据准备 选择和训练模型 微调模型 展示解决方案 启动.监控和维护系统 接下来,我将对每一个部分自己的心得进行总结. 一.观察大局 当开始一个真实机器学习项目时,需要针对项目的特点,有针对性进行分析.任何…
Hinton的第6课,这一课中最后的那个rmsprop,关于它的资料,相对较少,差不多除了Hinton提出,没论文的样子,各位大大可以在这上面研究研究啊. 一.mini-批量梯度下降概述 这部分将介绍使用随机梯度下降学习来训练NN,着重介绍mini-批量版本,而这个也是现今用的最广泛的关于训练大型NN的方法.这里再回顾下关于一个线性神经元他的错误表面是怎样的. 这里的错误表面就是在一个空间中,水平轴是对应于NN的权重,竖直轴对应于所产生的错误的表面.对于一个误差平方的线性神经元,这个表面总是一个…
这是Hinton的第10课 这节课有两篇论文可以作为背景或者课外读物<Adaptive mixtures of local experts>和<Improving neural networks by preventing co-adaptation of feature detectors>. 一.为什么模型的结合是有帮助的 这部分将介绍为什么当我们进行预测的时候,想要将许多模型结合起来.如果我们只有一个模型,我们不得不对这个模型选择某些能力:如果我们选择的能力太少,那么模型可以…
原文网址:http://www.blogjava.net/sound/archive/2008/08/21/40499.html 现在的计算机图书发展的可真快,很久没去书店,昨日去了一下,真是感叹万千,很多陌生的出版社,很多陌生的作者,很多陌生的译者,书名也是越来越夸张,什么××天精通××,精通××编程, ××宝典等等,书的印刷质量真的很好,纸张的质量也是今非昔比啊,但书的内容好象却是越来越让人失望,也许是我老了,我的思想我的观念已脱离现实社会,也许是外面的世界变化得太快,我编程数月,出去一走,…