word2vec训练&IC分词(待)】的更多相关文章

参考http://www.52nlp.cn/%E4%B8%AD%E8%8B%B1%E6%96%87%E7%BB%B4%E5%9F%BA%E7%99%BE%E7%A7%91%E8%AF%AD%E6%96%99%E4%B8%8A%E7%9A%84word2vec%E5%AE%9E%E9%AA%8C 1.下周中文wiki资料zhwiki-latest-pages-articles.xml.bz2,1.5G左右 2.用 process_wiki.py处理XML压缩文件,将其转换为text文件,执行:py…
看了几天word2vec的理论,终于是懂了一些.理论部分我推荐以下几篇教程,有博客也有视频: 1.<word2vec中的数学原理>:http://www.cnblogs.com/peghoty/p/3857839.html 2.刘建平:word2vec原理:https://www.cnblogs.com/pinard/p/7160330.html 3.吴恩达:<序列模型:自然语言处理与词嵌入> 理论看完了就要实战了,通过实战能加深对word2vec的理解.目前用word2vec算法…
转自:http://www.tensorflownews.com/2018/04/19/word2vec2/ 一.基于Hierarchical Softmax的word2vec模型的缺点 上篇说了Hierarchical Softmax ,使用霍夫曼树结构代替了传统的神经网络,可以提高模型训练的效率.但是如果基于Hierarchical Softmax的模型中所以词的位置是基于词频放置的霍夫曼树结构,词频越高的词在离根节点越近的叶子节点,词频越低的词在离根节点越远的叶子节点.也就是说当该模型在训…
https://www.jianshu.com/p/87798bccee48 一.文本处理流程 通常我们文本处理流程如下: 1 对文本数据进行预处理:数据预处理,包括简繁体转换,去除xml符号,将单词条内容处理成单行数据,word2vec训练原理是基于词共现来训练词之间的语义联系的.不同词条内容需分开训练 2 中文分词:中文NLP很重要的一步就是分词了,分词的好坏很大程度影响到后续的模型训练效果 3 特征处理:也叫词向量编码,将文本数据转换成计算机能识别的数据,便于计算,通常是转换成数值型数据,…
[问题]word2vec训练以后,得到预付卡和购物卡非常接近,可是实际上这两个东西是不一样的,如何区分这两个东西? 解决:建立一个独立词典,这个词典里的词是没有近义词的,独立的词,比如预付卡是很独特的,我们加进词典了,每次遇到这个词,我们就不是取TOPN 为1, 我们取topn为1.2, 这样就会实现: [预付卡 设置] [激活 预付卡] 的相似度,大于 [激活 预付卡] [使用 购物卡] 的相似度 ================== 这方法不好,本来word2vec训练出来的就应该是确实相似…
转自:https://blog.csdn.net/fendouaini/article/details/79905328 1.回顾DNN训练词向量 上次说到了通过DNN模型训练词获得词向量,这次来讲解下如何用word2vec训练词获取词向量. 回顾下之前所说的DNN训练词向量的模型: DNN模型中我们使用CBOW或者Skip-gram模式结合随机梯度下降,这样每次都只是取训练样本中几个词训练,每完成一次训练就反向传播更新一下神经网络中W和W’. 我们发现其中DNN模型仍存在两个缺点: 首先,每次…
经理让我把word2vec训练后得到的bin文件转为txt文件,目前还不知道txt文件用来干什么.其实word2vec训练语料时可以选择训练处出bin文件或者txt文件,但是训练出bin文件时过程太漫长,我怕直接训练出txt文件也一样慢,所以还是自己想办法做这个事情了. 我用到了gensim,这个需要自己安装一下,我的电脑装这个还挺麻烦的. # -*- coding: utf-8 -*- import gensim import codecs def main(): path_to_model…
最近针对之前发表的一篇博文<Deep Learning 在中文分词和词性标注任务中的应用>中的算法做了一个实现,感觉效果还不错.本文主要是将我在程序实现过程中的一些数学细节整理出来,借此优化一下自己的代码,也希望为对此感兴趣的朋友提供点参考.文中重点介绍训练算法中的模型参数计算,以及 Viterbi 解码算法. 相关链接: <Deep Learning 在中文分词和词性标注任务中的应用> <Deep Learning for Chinese Word Segmentation…
虽然早就对NLP有一丢丢接触,但是最近真正对中文文本进行处理才深深感觉到自然语言处理的难度,主要是机器与人还是有很大差异的,毕竟人和人之间都是有差异的,要不然不会讲最难研究的人嘞 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~不华丽的分割线~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 我了解的对词义理解毕竟优秀的当属word2vec了,在训练结束后能得到跟我们人…
--  这篇文章是一个学习.分析的博客 --- 1.准备数据与预处理 首先需要一份比较大的中文语料数据,可以考虑中文的维基百科(也可以试试搜狗的新闻语料库).中文维基百科的打包文件地址为 https://dumps.wikimedia.org/zhwiki/latest/zhwiki-latest-pages-articles.xml.bz2 中文维基百科的数据不是太大,xml的压缩文件大约1G左右.首先用 process_wiki_data.py处理这个XML压缩文件,执行:python pr…