CRT和EXCRT学习笔记】的更多相关文章

蒟蒻maomao终于学会\(CRT\)啦!发一篇博客纪念一下(还有防止忘掉) \(CRT\)要解决的是这样一个问题: \[x≡a_1​(mod m_1​)\] \[x≡a_2​(mod m_2​)\] \[x≡a_3​(mod m_3​)\] \[...\] \[x≡a_k​(mod m_k​)​\] 其中,\(m\)之间两两互质.这个问题有一个通解是\(\sum a_i * M * t_i / m_i\),其中\(t_i\)代表方程\(M * t_i / m_i ≡ 1\)的最小正整数解. 为…
前言 由于 \(\{\mathrm{CRT}\}\subseteq\{\mathrm{exCRT}\}\),而且 CRT 又太抽象了,所以直接学 exCRT 了. 摘自 huyufeifei 博客 这么抽象的东西我怎么可能会写 前置技能 gcd/lcm exgcd 快速乘 参考资料 一篇未通过的洛谷日报 by AH_ljq 比较直观的 exCRT 学习笔记 by Milky Way 我之前写过的 exgcd 学习笔记 huyufeifei 对 CRT 的劝退 用途 用于求一个关于 \(x​\)…
非扩展 用于求解线性同余方程组 ,其中模数两两互质 . 先来看一看两个显然的定理: 1.若 x \(\equiv\) 0 (mod p) 且 y \(\equiv\) 0 (mod p) ,则有 x+y \(\equiv\) 0 (mod p) 2.若 x \(\equiv\) b (mod p) 且 y \(\equiv\) 0 (mod p), 则有 x+y \(\equiv\) b (mod p) (0$\leq $b<p) 则整个方程组可以写为 b1 \(\begin{bmatrix}1…
这玩意解决的是把同余方程组合并的问题. CRT的核心思想和拉格朗日插值差不多,就是构造一组\(R_i\)使得$\forall i,j(i \neq j) $ \[R_im_i = 1, R_im_j = 0 \] 有了思路后这玩意随便构造一下就出来了,式子里面出现了一些奇怪的逆元,所以要求模数互质 现在考虑扩展CRT,模数不互质了 本质思路是合并两个同余方程组 发现同余条件等价于\(x=k_1m_1+a_1=k_2m_2+a_2\) 怎么求出其中的一个\(k\)呢?其实也就是\(k_1m_1-k…
注:转载本文须标明出处. 原文链接https://www.cnblogs.com/zhouzhendong/p/Number-theory.html 数论算法 剩余系相关 学习笔记 (基础回顾,(ex)CRT,(ex)lucas,(ex)BSGS,原根与指标入门,高次剩余,Miller_Robin+Pollard_Rho) 本文概要 1. 基础回顾 2. 中国剩余定理 (CRT) 及其扩展 3. 卢卡斯定理 (lucas) 及其扩展 4. 大步小步算法 (BSGS) 及其扩展 5. 原根与指标入…
Linux学习笔记(7)CRT实现windows与linux的文件上传下载 按下Alt + p 进入SFTP模式,或者右击选项卡进入 命令介绍 help 显示该FTP提供所有的命令 lcd 改变本地上传目录的路径 pwd 查询linux主机所在目录(也就是远程主机目录) cd 改变远程上传目录 lpwd 查询本地目录 get 将远程目录中文件下载到本地目录 ls 查询连接到当前linux主机所在目录有哪些文件 put 将本地目录中的文件上传到远程主机(linux) lls 查询当前本地上传目录有…
扩展中国剩余定理(EXCRT)学习笔记 用途 求解同余方程组 \(\begin{cases}x\equiv c_{1}\left( mod\ m_{1}\right) \\ x\equiv c_{2}\left( mod\ m_{2}\right) \\ \ldots \\ x\equiv c_r\left( mod\ m_r\right) \end{cases}\) 其中 \(m_1,m_2,m_3...m_k\) 为不一定两两互质的整数, 求 \(x\) 的最小非负整数解. 求法 考虑两两合…
基本上只是整理了一下框架,具体的学习给出了个人认为比较好的博客的链接. PART1 数论部分 最大公约数 对于正整数x,y,最大的能同时整除它们的数称为最大公约数 常用的:\(lcm(x,y)=xy\gcd(x,y)\) 裴蜀定理 定理:对于方程\(ax+by=c\),其存在解的充要条件是\(gcd(a,b)|c\),可以拓展到n元的方程. 证明的话应该自己yy一下还是很容易(显然可得),不过要是想要严谨证明还是去百度吧qwq 扩展欧几里得定理 首先我们都知道\(gcd(a,b)=gcd(b,a…
shell学习笔记 .查看/etc/shells,看看有几个可用的Shell . 曾经用过的命令存在.bash_history中,但是~/.bash_history记录的是前一次登录前记录的所有指令,成功登出后,才存到 .bash_history中. .man bash查看bash说明文件. .echo $ .变量的设定中,单引号与双引号的不同:双引号仍然可以保留变量的内容,单引号内只能是一般字符,不会有特殊符号. .反单引号`符号:在一串指令中,在`之内的指令都会被先执行,而其执行出来的结果将…
在https学习笔记二,已经弄清了数字证书的概念,组成和在https连接过程中,客户端是如何验证服务器端的证书的.这一章,主要介绍下如何使用openssl库来创建key file,以及生成root CA及签发子证书.学习主要参考官方文档:https://www.feistyduck.com/library/openssl-cookbook/online/ch-openssl.html# 一.openssl 简介 openssl 是目前最流行的 SSL 密码库工具,其提供了一个通用.健壮.功能完备…