TensorFlow激活函数+归一化-函数】的更多相关文章

激活函数的作用如下-引用<TensorFlow实践>: 这些函数与其他层的输出联合使用可以生成特征图.他们用于对某些运算的结果进行平滑或者微分.其目标是为神经网络引入非线性.曲线能够刻画出输入的复杂的变化.TensorFlow提供了多种激活函数,在CNN中一般使用tf.nn.relu的原因是因为,尽管relu会导致一些信息的损失,但是性能突出.在刚开始设计模型时,都可以采用relu的激活函数.高级用户也可以自己创建自己的激活函数,评价激活函数是否有用的主要因素参看如下几点: 1)该函数是单调的…
Tensorflow Batch normalization函数 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 stackoverflow上tensorflow实现BN的不同函数的解释 最近在运行程序时需要使用到Batch normalization方法,虽然网上有很多资料,但是说法各异而且没有完全准确的,很多使用了Tensorflow中TF.slim高层封装,自己不是很明白.现在我将自己搜集的资料进行整理,便于以后查阅. 关于Batch normalization Tens…
在分析Attention-over-attention源码过程中,对于tensorflow.nn.bidirectional_dynamic_rnn()函数的总结: 首先来看一下,函数: def bidirectional_dynamic_rnn( cell_fw, # 前向RNN cell_bw, # 后向RNN inputs, # 输入 sequence_length=None,# 输入序列的实际长度(可选,默认为输入序列的最大长度) initial_state_fw=None, # 前向的…
http://c.biancheng.net/view/1924.html Hornik 等人的工作(http://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2016/notes/Sonia_Hornik.pdf)证明了一句话,“只有一个隐藏层的多层前馈网络足以逼近任何函数,同时还可以保证很高的精度和令人满意的效果.” 本节将展示如何使用多层感知机(MLP)进行函数逼近,具体来说,是预测波士顿的房价.第2章使用回归技术对房价进行预测,现在…
批量归一化 在对神经网络的优化方法中,有一种使用十分广泛的方法——批量归一化,使得神经网络的识别准确度得到了极大的提升. 在网络的前向计算过程中,当输出的数据不再同一分布时,可能会使得loss的值非常大,使得网络无法进行计算.产生梯度爆炸的原因是因为网络的内部协变量转移,即正向传播的不同层参数会将反向训练计算时参照的数据样本分布改变.批量归一化的目的,就是要最大限度地保证每次的正向传播输出在同一分布上,这样反向计算时参照的数据样本分布就会与正向计算时的数据分布一样了,保证分布的统一. 了解了原理…
Hornik 等人的工作(http://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2016/notes/Sonia_Hornik.pdf)证明了一句话,“只有一个隐藏层的多层前馈网络足以逼近任何函数,同时还可以保证很高的精度和令人满意的效果.” 本节将展示如何使用多层感知机(MLP)进行函数逼近,具体来说,是预测波士顿的房价.第2章使用回归技术对房价进行预测,现在使用 MLP 完成相同的任务. 准备工作 对于函数逼近,这里的损失函数是 M…
TensorFlow中维护的集合列表 在一个计算图中,可以通过集合(collection)来管理不同类别的资源.比如通过 tf.add_to_collection 函数可以将资源加入一个 或多个集合中,然后通过 tf.get_collection 获取一个集合里面的所有资源(如张量,变量,或者运行TensorFlow程序所需的队列资源等等) 集合名称 集合内容 使用场景 tf.GraphKeys.VARIABLES 所有变量 持久化TensorFlow模型 tf.GraphKeys.TRAINA…
1.tf.cast(x,dtype,name) 此函数的目的是为了将x数据,准换为dtype所表示的类型,例如tf.float32,tf.bool,tf.uint8等 example:  import tensorflow as tf x = tf.Variable([True,True,False,False]) y = tf.cast(x,dtype = tf.float32) sess = tf.Session() init = tf.global_variables_initialize…
转载链接:https://www.zhihu.com/question/51325408/answer/125426642来源:知乎 这个问题无外乎有三个难点: 什么是sum 什么是reduce 什么是维度(indices, 现在均改为了axis和numpy等包一致) sum很简单,就是求和,那么问题就是2和3,让我们慢慢来讲.其实彻底讲清楚了这个问题,很多关于reduce,维度的问题都会恍然大悟. 0. 到底操作哪个维度?? sum这个操作完全可以泛化为任意函数,我们就以sum为例,来看看各种…
一下均在ubuntu环境下: (1)方法一,使用help()函数: 比如对于tf.placeholder(),在命令行中输入import tensorflow as tf , help(tf.placeholder)即可查看用法,再按"q"即可退出…