Spark中的Join类型】的更多相关文章

常规连接: 左半连接: 左半连接结果集:仅仅保留左边表中的行,这些行的joinkey出现在右边表中!!!(类似于leftTable.joinKey in (rightTable.joinKeys)).这种join是会出重的,当左边表join到一个之后便返回不在继续join. 左反连接: 结果集是:joinKey不在右表之中!…
spark基础知识请参考spark官网:http://spark.apache.org/docs/1.2.1/quick-start.html 无论是mapreduce还是spark ,分布式框架的性能优化方向大致分为:负载均衡.网络传输和磁盘I/O 这三块.而spark是基于内存的计算框架,因此在编写应用时需要充分利用其内存计算特征.本篇主要针对 spark应用中的join问题进行讨论,关于集群参数的优化会在另一篇文章中提及. 在传统的数据库平台和分布式计算平台,join的性能消耗都是很可观的…
这个要弄明白哟..CROSS JOIN, NATURAL, INNER JOIN ,LEFT OUTER JOIN(LEFT JOIN) 等等....带LEFT,RIGHT的必为OUTER,所以OUTER可省. INNER的行数只能是小于等于OUTER的行数. 谁在左,则LEFT依谁.返回行业和它一致. RIGHT亦然.. SELECT a.account_id, a.cust_id, b.name FROM account a LEFT OUTER JOIN business b ON a.c…
书上讲得明白,解了不少迷惑. SELECT e.fname, e.lname, d.name FROM employee AS e INNER JOIN department AS d ON e.dept_id = d.dept_id; SELECT e.fname, e.lname, d.name FROM employee AS e INNER JOIN department AS d USING (dept_id);…
spark sql 中join的类型 Spark DataFrame中join与SQL很像,都有inner join, left join, right join, full join; 类型 说明 inner join 内连接 left join 左连接 right join 右连接 full join 全连接 spark join 看其原型 def join(right : DataFrame, usingColumns : Seq[String], joinType : String) :…
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-64讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 腾讯微云:http://url.cn/TnGbdC 360云盘:http://yunpan.cn/cQ4c2UALDjSKy 访问密码 45e2 技术爱好者尤其是大数据爱好者 可以加DT大数据梦工厂的qq群 DT大数据梦工厂① :462923555 DT大数据梦工厂②:437123764 DT大数据梦工厂③…
spark中join有两种,一种是RDD的join,一种是sql中的join,分别来看: 1 RDD join org.apache.spark.rdd.PairRDDFunctions /** * Return an RDD containing all pairs of elements with matching keys in `this` and `other`. Each * pair of elements will be returned as a (k, (v1, v2)) t…
1. Spark中的基本概念 Application:基于Spark的用户程序,包含了一个driver program和集群中多个executor. Driver Program:运行Application的main()函数并创建SparkContext.通常SparkContext代表driver program. Executor:为某Application运行在worker node上的一个进程.该进程负责运行Task,并负责将数据存在内存或者磁盘 上.每个Application都有自己独…
RDD, Resilient Distributed Dataset,弹性分布式数据集, 是Spark的核心概念. 对于RDD的原理性的知识,可以参阅Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing 和 An Architecture for Fast and General Data Processing on Large Clusters 这两篇论文. 这篇…
1.PairRDD介绍     Spark为包含键值对类型的RDD提供了一些专有的操作.这些RDD被称为PairRDD.PairRDD提供了并行操作各个键或跨节点重新进行数据分组的操作接口.例如,PairRDD提供了reduceByKey()方法,可以分别规约每个键对应的数据,还有join()方法,可以把两个RDD中键相同的元素组合在一起,合并为一个RDD. 2.创建Pair RDD     程序示例:对一个英语单词组成的文本行,提取其中的第一个单词作为key,将整个句子作为value,建立 P…
1.PairRDD介绍     Spark为包含键值对类型的RDD提供了一些专有的操作.这些RDD被称为PairRDD.PairRDD提供了并行操作各个键或跨节点重新进行数据分组的操作接口.例如,PairRDD提供了reduceByKey()方法,可以分别规约每个键对应的数据,还有join()方法,可以把两个RDD中键相同的元素组合在一起,合并为一个RDD. 2.创建Pair RDD     程序示例:对一个英语单词组成的文本行,提取其中的第一个单词作为key,将整个句子作为value,建立 P…
1.RDD介绍:     RDD,弹性分布式数据集,即分布式的元素集合.在spark中,对所有数据的操作不外乎是创建RDD.转化已有的RDD以及调用RDD操作进行求值.在这一切的背后,Spark会自动将RDD中的数据分发到集群中,并将操作并行化.     Spark中的RDD就是一个不可变的分布式对象集合.每个RDD都被分为多个分区,这些分区运行在集群中的不同节点上.RDD可以包含Python,Java,Scala中任意类型的对象,甚至可以包含用户自定义的对象.     用户可以使用两种方法创建…
原文地址:Spark SQL 之 Join 实现 Spark SQL 之 Join 实现 涂小刚 2017-07-19 217标签: spark , 数据库 Join作为SQL中一个重要语法特性,几乎所有稍微复杂一点的数据分析场景都离不开Join,如今Spark SQL(Dataset/DataFrame)已经成为Spark应用程序开发的主流,作为开发者,我们有必要了解Join在Spark中是如何组织运行的. SparkSQL总体流程介绍 在阐述Join实现之前,我们首先简单介绍SparkSQL…
数据倾斜导致的致命后果: 1 数据倾斜直接会导致一种情况:OOM. 2 运行速度慢,特别慢,非常慢,极端的慢,不可接受的慢. 搞定数据倾斜需要: 1.搞定shuffle 2.搞定业务场景 3 搞定 cpu core的使用情况 4 搞定OOM的根本原因等. 数据倾斜的解决方案: 解决方案一:使用Hive ETL预处理数据 方案适用场景:导致数据倾斜的是Hive表.如果该Hive表中的数据本身很不均匀(比如某个key对应了100万数据,其他key才对应了10条数据),而且业务场景需要频繁使用Spar…
今天,我们就先聊一下spark中的DAG以及RDD的相关的内容 1.DAG:有向无环图:有方向,无闭环,代表着数据的流向,这个DAG的边界则是Action方法的执行 2.如何将DAG切分stage,stage切分的依据:有宽依赖的时候要进行切分(shuffle的时候, 也就是数据有网络的传递的时候),则一个wordCount有两个stage, 一个是reduceByKey之前的,一个事reduceByKey之后的(图1), 则我们可以这样的理解,当我们要进行提交上游的数据的时候, 此时我们可以认…
参考:http://www.raincent.com/content-85-11052-1.html 1.Application:Spark应用程序 指的是用户编写的Spark应用程序,包含了Driver功能代码和分布在集群中多个节点上运行的Executor代码. Spark应用程序,由一个或多个作业JOB组成,如下图所示: 2.Driver:驱动程序 Driver负责运行Application的Main()函数并且创建SparkContext,其中创建SparkContext的目的是为了准备S…
<深入理解Spark:核心思想与源码分析>一书前言的内容请看链接<深入理解SPARK:核心思想与源码分析>一书正式出版上市 <深入理解Spark:核心思想与源码分析>一书第一章的内容请看链接<第1章 环境准备> <深入理解Spark:核心思想与源码分析>一书第二章的内容请看链接<第2章 SPARK设计理念与基本架构> <深入理解Spark:核心思想与源码分析>一书第三章第一部分的内容请看链接<深入理解Spark:核心…
--查询数据库中所有指定类型的字段名称和所在的表名 --eg: 下面查的是当前数据库中 所有字段类型为 nvarchar(max) 的字段名和表名 SELECT cols.object_id , cols.column_id , cols.name AS ColumnName , TYPE_NAME(cols.system_type_id) AS ColumnType , cols.max_length , obj.name AS TableName FROM sys.columns cols…
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-87讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 腾讯微云:http://url.cn/TnGbdC 360云盘:http://yunpan.cn/cQ4c2UALDjSKy 访问密码 45e2土豆:http://www.tudou.com/programs/view/NGgUD5FBQaA/优酷:http://v.youku.com/v_show/id_…
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-87讲)完整视频.PPT.代码下载: 百度云盘:http://pan.baidu.com/s/1c0noOt6 腾讯微云:http://url.cn/TnGbdC 360云盘:http://yunpan.cn/cQ4c2UALDjSKy 访问密码 45e2土豆:http://www.tudou.com/programs/view/N9y_okxSJzQ/优酷:http://v.youku.com/v_show/id…
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-87讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 腾讯微云:http://url.cn/TnGbdC 360云盘:http://yunpan.cn/cQ4c2UALDjSKy 访问密码 45e2土豆:http://www.tudou.com/programs/view/IVN4EuFlmKk/优酷:http://v.youku.com/v_show/id_…
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-64讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 腾讯微云:http://url.cn/TnGbdC 360云盘:http://yunpan.cn/cQ4c2UALDjSKy 访问密码 45e2土豆:http://www.tudou.com/programs/view/5uuKOP38d6s/优酷:http://v.youku.com/v_show/id_…
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-64讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 腾讯微云:http://url.cn/TnGbdC 360云盘:http://yunpan.cn/cQ4c2UALDjSKy 访问密码 45e2 技术爱好者尤其是大数据爱好者 可以加DT大数据梦工厂的qq群 DT大数据梦工厂① :462923555 DT大数据梦工厂②:437123764 DT大数据梦工厂③…
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-64讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 腾讯微云:http://url.cn/TnGbdC 360云盘:http://yunpan.cn/cQ4c2UALDjSKy 访问密码 45e2 技术爱好者尤其是大数据爱好者 可以加DT大数据梦工厂的qq群 DT大数据梦工厂① :462923555 DT大数据梦工厂②:437123764 DT大数据梦工厂③…
Spark小课堂Week7 从Spark中一个例子看面向对象设计 今天我们讨论了个问题,来设计一个Spark中的常用功能. 功能描述:数据源是一切处理的源头,这次要实现下加载数据源的方法load() 初始需求 需求:支持Json数据源加载 具体:输入一个path,需要返回一个Relation, Relation中提供scan()和write()两个方法 示意代码: class Context{ public Relation json(String path){ return new Relat…
和JS 中的JOIN 方法一样,将一数组按照JOIN的参数连接起来.比如: var arr = [ "a", "b", "c", "d", "e" ]; document.write(arr.join("-"));  结果:a-b-c-d-e.     var members=["John","Steve","Ben",&quo…
版权声明:本文为原创文章,未经允许不得转载. 复习内容: Spark中Job如何划分为Stage http://www.cnblogs.com/yourarebest/p/5342424.html 1.Spark中Stage的提交 1.在复习内容中,将Job划分为Stage这一过程的调用起始于方法handleJobSubmitted,同样Stage的提交也包含在该方法中,如下所示: private[scheduler] def handleJobSubmitted(jobId: Int, fin…
版权声明:本文为原创文章,未经允许不得转载. 复习内容: Spark中Job的提交 http://www.cnblogs.com/yourarebest/p/5342404.html 1.Spark中Job如何划分为Stage 我们在复习内容中介绍了Spark中Job的提交,下面我们看如何将Job划分为Stage. 对于JobSubmitted事件类型,通过 dagScheduler的handleJobSubmitted方法处理,方法源码如下: private[scheduler] def ha…
版权声明:本文为原创文章,未经允许不得转载. Spark程序程序job的运行是通过actions算子触发的,每一个action算子其实是一个runJob方法的运行,详见文章 SparkContex源码解读(一)http://www.cnblogs.com/yourarebest/p/5326678.html 1.Spark中Job的提交 以一个简单的runjob为例,源码如下: def runJobT, U: Unit = { val start = System.nanoTime //通过da…
继续上一篇的内容.上一篇的内容为: Spark中Master源码分析(一) http://www.cnblogs.com/yourarebest/p/5312965.html 4.receive方法,receive方法中消息类型主要分为以下12种情况: (1)重新选择了新Leader,进行数据的恢复 (2)恢复完毕,重新创建Driver,完成资源的重新分配 (3)触发Leadership的选举 (4)Master注册新的Worker (5)Master注册新的App,然后重新分配资源 (6)Ex…