首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
[1] 从零开始 TensorFlow 学习
】的更多相关文章
[1] 从零开始 TensorFlow 学习
计算图的基本概念 TensorFlow 的名字中己经说明了它最重要的两个概念一一Tensor 和 Flow Tensor: 张量(高阶数组,矩阵为二阶张量,向量为一阶张量,标量为零阶张量) Flow: 流动的张量数据 (形状shape可以像水流一样变动) 所以TensorFlow是一个通过先构建图,然后通过张量Flow的形式来表述计算的编程系统 TensorFlow中的每一个计算都是图上的一个节点 ,称为Operation,简称op 节点之间的边 描述了计算之间的依赖关系 左图即为…
Tensorflow学习笔记2:About Session, Graph, Operation and Tensor
简介 上一篇笔记:Tensorflow学习笔记1:Get Started 我们谈到Tensorflow是基于图(Graph)的计算系统.而图的节点则是由操作(Operation)来构成的,而图的各个节点之间则是由张量(Tensor)作为边来连接在一起的.所以Tensorflow的计算过程就是一个Tensor流图.Tensorflow的图则是必须在一个Session中来计算.这篇笔记来大致介绍一下Session.Graph.Operation和Tensor. Session Session提供了O…
用tensorflow学习贝叶斯个性化排序(BPR)
在贝叶斯个性化排序(BPR)算法小结中,我们对贝叶斯个性化排序(Bayesian Personalized Ranking, 以下简称BPR)的原理做了讨论,本文我们将从实践的角度来使用BPR做一个简单的推荐.由于现有主流开源类库都没有BPR,同时它又比较简单,因此用tensorflow自己实现一个简单的BPR的算法,下面我们开始吧. 1. BPR算法回顾 BPR算法是基于矩阵分解的排序算法,它的算法训练集是一个个的三元组$<u,i,j>$,表示对用户u来说,商品i的优先级要高于商品j.训练成…
如何从零开始系统化学习视觉SLAM?
由于显示格式问题,建议阅读原文:如何从零开始系统化学习视觉SLAM? 什么是SLAM? SLAM是 Simultaneous Localization And Mapping的 英文首字母组合,一般翻译为:同时定位与建图.同时定位与地图构建.虽然听起来比较拗口,但SLAM却是三维视觉的核心技术,广泛应用于AR.自动驾驶.智能机器人.无人机等前沿热门领域.可以说凡是具有一定行动能力的智能体都拥有某种形式的SLAM系统.关于SLAM的具体应用场景介绍可以看<SLAM有什么用?> SLAM是计算机视…
从零开始一起学习SLAM | 掌握g2o边的代码套路
点"计算机视觉life"关注,置顶更快接收消息! 小白:师兄,g2o框架<从零开始一起学习SLAM | 理解图优化,一步步带你看懂g2o代码>,以及顶点<从零开始一起学习SLAM | 掌握g2o顶点编程套路>我都学完啦,今天给我讲讲g2o中的边吧!是不是也有什么套路? 师兄:嗯,g2o的边比顶点稍微复杂一些,不过前面你也了解了许多g2o的东西,有没有发现g2o的编程基本都是固定的格式(套路)呢? 小白:是的,我现在按照师兄说的g2o框架和顶点设计方法,再去看g2…
从零开始一起学习SLAM | 掌握g2o顶点编程套路
点"计算机视觉life"关注,置顶更快接收消息! ## 小白:师兄,上一次将的g2o框架<从零开始一起学习SLAM | 理解图优化,一步步带你看懂g2o代码>真的很清晰,我现在再去看g2o的那些优化的部分,基本都能看懂了呢! 师兄:那太好啦,以后多练习练习,加深理解 小白:嗯,我开始编程时,发现g2o的顶点和边的定义也非常复杂,光看十四讲里面,就有好几种不同的定义,完全懵圈状态...师兄,能否帮我捋捋思路啊 师兄:嗯,你说的没错,入门的时候确实感觉很乱,我最初也是花了些时间…
从零开始一起学习SLAM | 点云到网格的进化
点击公众号"计算机视觉life"关注,置顶星标更快接收消息! 本文编程练习框架及数据获取方法见文末获取方式 菜单栏点击"知识星球"查看「从零开始学习SLAM」一起学习交流 小白:师兄,师兄,你在<从零开始一起学习SLAM | 给点云加个滤网>.<从零开始一起学习SLAM | 点云平滑法线估计>中都提到了点云网格化,这个听起来高大上,不过到底是什么意思呢? 师兄:别急,是这样的:你看我们之前处理的都是一个个点,不管是滤波还是平滑,我们都是对一个…
Tensorflow学习笔记2019.01.22
tensorflow学习笔记2 edit by Strangewx 2019.01.04 4.1 机器学习基础 4.1.1 一般结构: 初始化模型参数:通常随机赋值,简单模型赋值0 训练数据:一般打乱.random.shuffle() 在训练数据上推断模型:得到输出 计算损失:loss(X, Y)多种损失函数 调整模型参数:最小化损失 SGD等优化方法. 评估:70%:30% 分训练集和校验集 代码框架: 首先模型参数初始化, 然后为每个训练闭环中的运算定义一个方法:读取训练数据input,计算…
Tensorflow学习笔记2019.01.03
tensorflow学习笔记: 3.2 Tensorflow中定义数据流图 张量知识矩阵的一个超集. 超集:如果一个集合S2中的每一个元素都在集合S1中,且集合S1中可能包含S2中没有的元素,则集合S1就是S2的一个超集,反过来,S2是S1的子集. 张量形状: 固定长度: [],() 0阶次:[3],(2,3) 1/2阶次 不定长度:[None] 表示任意长度的向量,(None,3) 表示行数任意,3列的矩阵 获取Op:tf.shape(tensor, name="tensor_shape&qu…
TensorFlow学习笔记之--[compute_gradients和apply_gradients原理浅析]
I optimizer.minimize(loss, var_list) 我们都知道,TensorFlow为我们提供了丰富的优化函数,例如GradientDescentOptimizer.这个方法会自动根据loss计算对应variable的导数.示例如下: loss = ... opt = tf.tf.train.GradientDescentOptimizer(learning_rate=0.1) train_op = opt.minimize(loss) init = tf.initiali…