MapReduce实现ReduceSideJoin操作】的更多相关文章

本文转载于:http://blog.csdn.net/xyilu/article/details/8996204 一.准备两张表以及对应的数据 (1)m_ys_lab_jointest_a(以下简称表A) 建表语句: create table if not exists m_ys_lab_jointest_a ( id bigint, name string ) row format delimited fields terminated ' lines terminated ' stored…
Hadoop基础-MapReduce的Join操作 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.连接操作Map端Join(适合处理小表+大表的情况) no001 no002 no003 no004 no005 no006 no007 no008 orders.txt 文件内容 linghunbaiduren yinzhengjie alex linhaifeng wupeiqi xupeicheng changqiling laowang customers.txt 文…
哈喽-各位小伙伴们中秋快乐,好久没更新新的文章啦,今天分享如何使用mapreduce进行join操作. 在离线计算中,我们常常不只是会对单一一个文件进行操作,进行需要进行两个或多个文件关联出更多数据,类似与sql中的join操作. 今天就跟大家分享一下如何在MapReduce中实现join操作 需求 现有两张,一张是产品信息表,一张是订单表.订单表中只表存了产品ID,如果想要查出订单以及产品的相关信息就必须使用关联. 实现 根据MapReduce特性,大家都知道在reduce端,相同key的ke…
 在关系型数据库中,要实现join操作是非常方便的,通过sql定义的join原语就可以实现.在hdfs存储的海量数据中,要实现join操作,可以通过HiveQL很方便地实现.不过HiveQL也是转化成MapReduce来完成操作,本文首先研究如何通过编写MapReduce程序来完成join操作. 一.Map-Join:在Reduce端完成的join操作  假设存在用户数据文件users.txt和用户登录日志数据文件login_logs.txt,数据内容分别如下所示:  用户数据文件user.tx…
MapReduce概念 MapReduce是一种分布式计算模型,由谷歌提出,主要用于搜索领域,解决海量数据计算问题. MR由两个阶段组成:Map和Reduce,用户只需要实现map()和reduce()两个函数实现分布式计算. 这两个函数的形参是key,value对,表示函数的输入信息. MP执行流程 客户端提交给jobtracker,jobtracker分配给tasktracker. trasktracker会对任务进行mapper和reducer操作. MapReduce原理 一个map输入…
注意:本实验是对前述实验的延续,如果直接点开始实验进入则需要按先前学习的方法启动hadoop 部署节点操作系统为CentOS,防火墙和SElinux禁用,创建了一个shiyanlou用户并在系统根目录下创建/app目录,用于存放 Hadoop等组件运行包.因为该目录用于安装hadoop等组件程序,用户对shiyanlou必须赋予rwx权限(一般做法是root用户在根目录下 创建/app目录,并修改该目录拥有者为shiyanlou(chown –R shiyanlou:shiyanlou /app…
0. 说明 Map 端 join && Reduce 端 join 1. Map 端 join Map 端 join:大表+小表 => 将小表加入到内存,迭代大表每一行,与之进行拼串操作 Map 端 join 代码 2. Reduce 端 join Reduce 端 join: 大表+大表 1. 获取文件名 (FileSplit)context.getSplit() 2. 将 order 数据添加标记位 1 将 customer 数据添加标记位 2 3. 重写CompKey,将 id…
转载自残缺的孤独 1.概述 MongoDB中的MapReduce相当于关系数据库中的group by.使用MapReduce要实现两个函数Map和Reduce函数.Map函数调用emit(key,value),遍历 Collection中所有的记录,将key与value传递给Reduce函数进行处理. 2.MapReduce (1)其基本语法如下所示: db.runCommand({ mapreduce:<collection>, map:<mapfunction>, reduce…
一.准备两张表以及对应的数据 (1)m_ys_lab_jointest_a(以下简称表A) 建表语句: create table if not exists m_ys_lab_jointest_a ( id bigint, name string ) row format delimited fields terminated ' lines terminated ' stored as textfile;   具体数据如下: id name 1 北京 2 天津 3 河北 4 山西 5 内蒙古…
上次和朋友讨论到mapreduce,join应该发生在map端,理由太想当然到sql里面的执行过程了 wheremap端 join在map之前(笛卡尔积),但实际上网上看了,mapreduce的笛卡尔积发生在reduce端,下面哥们有个实现过程可以参考(http://blog.csdn.net/xyilu/article/details/8996204).有空再看看 实际上实现过程是不是和他写的代码一样.             前阵子把MapReduce实现join操作的算法设想清楚了,但一直…
用Hive一句话搞定的,可是有时必需要用mapreduce 方法介绍 1. 概述 在传统数据库(如:MYSQL)中,JOIN操作是很常见且很耗时的.而在HADOOP中进行JOIN操作.相同常见且耗时,因为Hadoop的独特设计思想,当进行JOIN操作时,有一些特殊的技巧. 本文首先介绍了Hadoop上通常的JOIN实现方法.然后给出了几种针对不同输入数据集的优化方法. 2. 常见的join方法介绍 如果要进行join的数据分别来自File1和File2. 2.1 reduce side join…
开始聊mapreduce,mapreduce是hadoop的计算框架,我学hadoop是从hive开始入手,再到hdfs,当我学习hdfs时候,就感觉到hdfs和mapreduce关系的紧密.这个可能是我做技术研究的思路有关,我开始学习某一套技术总是想着这套技术到底能干什么,只有当我真正理解了这套技术解决了什么问题时候,我后续的学习就能逐步的加快,而学习hdfs时候我就发现,要理解hadoop框架的意义,hdfs和mapreduce是密不可分,所以当我写分布式文件系统时候,总是感觉自己的理解肤浅…
MapReduce Tutorial(个人指导) Purpose(目的) Prerequisites(必备条件) Overview(综述) Inputs and Outputs(输入输出) MapReduce - User Interfaces(用户接口) Payload(有效负载) Mapper Reducer Partitioner Counter Job Configuration(作业配置) Task Execution & Environment(任务执行和环境) Memory Man…
mapReduce是大数据的核心内容,但实际操作中别用这个,所谓的mapReduce分两步 1.map:将数据分别取出,Map函数调用emit(key,value)遍历集合中所有的记录,将key与value传给Reduce函数进行处理 2.reduce:负责数据的最后处理,function(key,value){} 参数是map传来的key和value Mongodb中的Map/reduce主要是用来对数据进行批量处理和聚合操作,有点类似于使用Hadoop对集合数据进行处理,所有输入数据都是从集…
开始聊mapreduce,mapreduce是hadoop的计算框架,我学hadoop是从hive开始入手,再到hdfs,当我学习hdfs时候,就感觉到hdfs和mapreduce关系的紧密.这个可能是我做技术研究的思路有关,我开始学习某一套技术总是想着这套技术到底能干什么,只有当我真正理解了这套技术解决了什么问题时候,我后续的学习就能逐步的加快,而学习hdfs时候我就发现,要理解hadoop框架的意义,hdfs和mapreduce是密不可分,所以当我写分布式文件系统时候,总是感觉自己的理解肤浅…
1,概述MapReduce是个非常灵活和强大的数据聚合工具.它的好处是可以把一个聚合任务分解为多个小的任务,分配到多服务器上并行处理.MongoDB也提供了MapReduce,当然查询语肯定是JavaScript.MongoDB中的MapReduce相当于关系数据库中的group by.使用MapReduce要实现两个函数Map和Reduce函数.Map函数调用emit(key,value),遍历Collection中所有的记录,将key与value传递给Reduce函数进行处理.2,基本语法…
1.        MapReduce程序开发步骤 编写map 和 reduce 程序–> 单元测试 -> 编写驱动程序进行验证-> 本地数据集调试 ->  部署到集群运行 用到的工具: Junit.Mockito.Ant 2.        使用Configuration 关键点: 1.  Configuration类可以加载配置文件,包括系统的和自定义的 2.  addResource方法后面的配置文件会覆盖前面的 3.  配置文件的几个特性:name.value.descri…
4.1 连接(Join) 连接是关系运算,可以用于合并关系(relation).对于数据库中的表连接操作,可能已经广为人知了.在MapReduce中,连接可以用于合并两个或多个数据集.例如,用户基本信息和用户活动详情信息.用户基本信息来自于OLTP数据库.用户活动详情信息来自于日志文件. MapReduce的连接操作可以用于以下场景: 用户的人口统计信息的聚合操作(例如:青少年和中年人的习惯差异). 当用户超过一定时间没有使用网站后,发邮件提醒他们.(这个一定时间的阈值是用户自己预定义的) 分析…
mongodb 基本操作(续)--聚合.索引.游标及mapReduce 目录 聚合操作 MapReduce 游标 索引 聚合操作 像大多关系数据库一样,Mongodb也提供了聚合操作,这里仅列取常见到的几个聚合操作: Count计数 就像db.collection.find()操作能返回满足条件的记录一样,db.collection.count()返回满足条件的记录数,如下: db.blog.count({"title":"mongo"}) 此命令返回blog集合中…
[本文转载自:http://www.cnblogs.com/sharpxiajun/p/3151395.html] 开始聊mapreduce,mapreduce是hadoop的计算框架,我学hadoop是从hive开始入手,再到hdfs,当我学习hdfs时候,就感觉到hdfs和mapreduce关系的紧密.这个可能是我做技术研究的思路有关,我开始学习某一套技术总是想着这套技术到底能干什么,只有当我真正理解了这套技术解决了什么问题时候,我后续的学习就能逐步的加快,而学习hdfs时候我就发现,要理解…
MongoDB虽然不像我们常用的mysql,sqlserver,oracle等关系型数据库有group by函数那样方便分组,但是MongoDB要实现分组也有3个办法: * Mongodb三种分组方式: * 1.group(先筛选再分组,不支持分片,对数据量有所限制,效率不高) * 2.mapreduce(基于js引擎,单线程执行,效率较低,适合用做后台统计等) * 3.aggregate(推荐) (如果你的PHP的mongodb驱动版本需>=1.3.0,推荐你使用aggregate,性能要高很…
谷歌三大核心技术(二)Google MapReduce中文版  Google MapReduce中文版     译者: alex   摘要 MapReduce是一个编程模型,也是一个处理和生成超大数据集的算法模型的相关实现.用户首先创建一个Map函数处理一个基于key/value pair的数据集合,输出中间的基于key/value pair的数据集合:然后再创建一个Reduce函数用来合并所有的具有相同中间key值的中间value值.现实世界中有很多满足上述处理模型的例子,本论文将详细描述这个…
hadoop 学习笔记:mapreduce框架详解 开始聊mapreduce,mapreduce是hadoop的计算框架,我学hadoop是从hive开始入手,再到hdfs,当我学习hdfs时候,就感觉到hdfs和mapreduce关系的紧密.这个可能是我做技术研究的思路有关,我开始学习某一套技术总是想着这套技术到底能干什么,只有当我真正理解了这套技术解决了什么问题时候,我后续的学习就能逐步的加快,而学习hdfs时候我就发现,要理解hadoop框架的意义,hdfs和mapreduce是密不可分,…
一.简介 在用MongoDB查询返回的数据量很大的情况下,做一些比较复杂的统计和聚合操作做花费的时间很长的时候,可以用MongoDB中的MapReduce进行实现 MapReduce是个非常灵活和强大的数据聚合工具.它的好处是可以把一个聚合任务分解为多个小的任务,分配到多服务器上并行处理.MongoDB也提供了MapReduce,当然查询语肯定是JavaScript. MongoDB中的MapReduce主要有以下几阶段: Map:把一个操作Map到集合中的每一个文档 Shuffle: 根据Ke…
一.预处理阶段 二.Map阶段 一个Map任务被JobTracker(管家)分配到多个TaskTracker(弟弟)执行,如下图所示,弟弟的map()只负责拆分,虽然map()输出两个相同的键值对,但它并不会对两个重复的键值对进行合并,而且输出的键值对也是无序的,没有按照字母顺序排列.而这些工作都会交给Shuffle(洗牌)阶段去做. 三.Shuffle阶段 Shuffle阶段实际上并不是一个和Map阶段和Reduce阶段独立的阶段,实际上它分为Map端的Shuffle阶段和Reduce端的阶段…
---恢复内容开始--- 之前我们都是学习使用MapReduce处理一张表的数据(一个文件可视为一张表,hive和关系型数据库Mysql.Oracle等都是将数据存储在文件中).但是我们经常会遇到处理多张表的场景,不同的数据存储在不同的文件中,因此Hadoop也提供了类似传统关系型数据库的join操作.Hadoop生态组件的高级框架Hive.Pig等也都实现了join连接操作,编写类似SQL的语句,就可以在MapReduce中运行,底层的实现也是基于MapReduce.本文介绍如何使用MapRe…
开始聊MapReduce,MapReduce是Hadoop的计算框架,我学Hadoop是从Hive开始入手,再到hdfs,当我学习hdfs时候,就感觉到hdfs和mapreduce关系的紧密.这个可能是我做技术研究的思路有关,我开始学习某一套技术总是想着这套技术到底能干什么,只有当我真正理解了这套技术解决了什么问题时候,我后续的学习就能逐步的加快,而学习hdfs时候我就发现,要理解hadoop框架的意义,hdfs和mapreduce是密不可分,所以当我写分布式文件系统时候,总是感觉自己的理解肤浅…
MapReduce原理 WordCount例子 用mapreduce计算wordcount的例子: package org.apache.hadoop.examples; import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoo…
前言 本文主要介绍 MapReduce 的原理及开发,讲解如何利用 Combine.Partitioner.WritableComparator等组件对数据进行排序筛选聚合分组的功能.由于文章是针对开发人员所编写的,在阅读本文前,文章假设读者已经对Hadoop的工作原理.安装过程有一定的了解,因此对Hadoop的安装就不多作说明.请确保源代码运行在Hadoop 2.x以上版本,并以伪分布形式安装以方便进行调试(单机版会对 Partitioner 功能进行限制).文章主要利用例子介绍如何利用 Ma…
一.简介 在用MongoDB查询返回的数据量很大的情况下,做一些比较复杂的统计和聚合操作做花费的时间很长的时候,可以用MongoDB中的MapReduce进行实现 MapReduce是个非常灵活和强大的数据聚合工具.它的好处是可以把一个聚合任务分解为多个小的任务,分配到多服务器上并行处理.MongoDB也提供了MapReduce,当然查询语肯定是JavaScript. MongoDB中的MapReduce主要有以下几阶段: Map:把一个操作Map到集合中的每一个文档 Shuffle: 根据Ke…