day 7-7 线程池与进程池】的更多相关文章

使用concurrent.futures模块中的线程池与进程池 线程池与进程池 以线程池举例,系统使用多线程方式运行时,会产生大量的线程创建与销毁,创建与销毁必定会带来一定的消耗,甚至导致系统资源的崩溃,这时使用线程池就是一个很好的解决方式. “池”就说明了这里边维护了不止一个线程,线程池会提前创建好规定数量的线程,把需要使用多线程的任务提交给线程池,线程池会自己选择空闲的线程来执行提交的任务,任务完成后,线程并不会在池子中销毁,而是继续存在并等待完成下一个分配的任务.当线程池以满的时候,提交的…
一. 进程池与线程池 在刚开始学多进程或多线程时,我们迫不及待地基于多进程或多线程实现并发的套接字通信,然而这种实现方式的致命缺陷是:服务的开启的进程数或线程数都会随着并发的客户端数目地增多而增多,这会对服务端主机带来巨大的压力,甚至于不堪重负而瘫痪,于是我们必须对服务端开启的进程数或线程数加以控制,让机器在一个自己可以承受的范围内运行,这就是进程池或线程池的用途,例如进程池,就是用来存放进程的池子,本质还是基于多进程,只不过是对开启进程的数目加上了限制. from socket import…
Python标准库为我们提供了threading(多线程模块)和multiprocessing(多进程模块).从Python3.2开始,标准库为我们提供了concurrent.futures模块,它提供了 ThreadPoolExecutor 和 ProcessPoolExecutor 两个类,实现了对threading和multiprocessing的更高级的抽象,对编写线程池/进程池提供了直接的支持. Executor是一个抽象类,它不能被直接使用.但是它提供的两个子类ThreadPoolE…
1concurent.furtrue实现线程池与进程池 2协程 1concurent.furtrue实现线程池与进程池 实现进程池 #进程池 from concurrent.futures import ProcessPoolExecutor import os,time,random def task(n): print('%s is running' %os.getpid()) time.sleep(2) return n**2 if __name__ == '__main__': p=Pr…
本文转载于:https://blog.csdn.net/ywcpig/article/details/52557080 内存池 平常我们使用new.malloc在堆区申请一块内存,但由于每次申请的内存大小不一样就会产生很多内存碎片,造成不好管理与浪费的情况. 内存池则是在真正使用内存之前,先申请分配一定数量的.大小相等(一般情况下)的内存块留作备用.当有新的内存需求时,就从内存池中分出一部分内存块,若内存块不够再继续申请新的内存.这样做的一个显著优点是尽量避免了内存碎片,使得内存分配效率得到提升…
一  GIL(global interpreter lock) GIL中文叫全局解释器锁,我们执行一个文件会产生一个进程,那么我们知道进程不是真正的执行单位,而是资源单位,所以进程中放有解释器(cpython)和py文件,也就是解释器需要解释的文件,即CPU要运行的文件. GIL: GIL本质上是一个互斥锁,是一个加在解释器身上的互斥锁, 在同一个进程内,所有的线程要想执行都必须要先抢到GIL锁,才能执行解释器代码. 优点: 保证cpython解释器内存管理的线程安全.保证同一时间只有一个线程运…
multiprocessing.procsess 定义一个函数 def func():pass 在if __name__=="__main__":中实例化 p = process(target=子进程要执行的函数,args(函数的参数且必须以元组的方式传参)) p.start() 开启子进程 p.join() 感知子进程的结束,主进程等待子进程执行完后才退出 p.terminate() 结束一个子进程 p.is_alive() 查看某个进程是否还在运行 属性 p.name p.pid…
一.基类Executor Executor类是ThreadPoolExecutor 和ProcessPoolExecutor 的基类.它为我们提供了如下方法: submit(fn, *args, **kwargs):提交任务.以 fn(*args **kwargs) 方式执行并返回 Future 对像. fn:函数地址. *args:位置参数. **kwargs:关键字参数. map(func, *iterables, timeout=None, chunksize=1): func:函数地址.…
GIL全局解释器锁 1.什么是GIL 官方解释:'''In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple native threads from executing Python bytecodes at once. This lock is necessary mainly because CPython’s memory management is not thread-safe…
Python线程池与进程池 前言 前面我们已经将线程并发编程与进程并行编程全部摸了个透,其实我第一次学习他们的时候感觉非常困难甚至是吃力.因为概念实在是太多了,各种锁,数据共享同步,各种方法等等让人十分头痛.所以这边要告诉你一个好消息,前面的所有学习的知识点其实都是为本章知识点做铺垫,在学习了本章节的内容后关于如何使用多线程并发与多进程并行就采取本章节中介绍的方式即可. 这里要介绍一点与之前内容不同的地方,即如果使用队列进行由进程池创建的进程之间数据共享的话不管是multiprocessing模…
线程池和进程池 一.池的概念 池是用来保证计算机硬件安全的情况下最大限度的利用计算机 它降低了程序的运行效率但是保证了计算机硬件的安全从而让你写的程序能够正常运行 ''' 无论是开设进程也好还是开设线程也好 是不是都需要消耗资源 只不过开设线程的消耗比开设进程的稍微小一点而已 我们是不可能做到无限制的开设进程和线程的 因为计算机硬件的资源更不上!!! 硬件的开发速度远远赶不上软件 我们的宗旨应该是在保证计算机硬件能够正常工作的情况下最大限度的利用它 ''' 二.线程池 基本使用方式: from…
一.更新版进程池与进程池比较 from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor import os, time def func(i): print('Process', i, os.getpid()) time.sleep(0.1) print("Process..end") return 88899 # (1)ProcessPoolExcutor 进程池的基本使用(改良版) 相对于旧版的进程…
本节内容 线程池 进程池 协程 try异常处理 IO多路复用 线程的继承调用 1.线程池 线程池帮助你来管理线程,不再需要每个任务都创建一个线程进行处理任务. 任务需要执行时,会从线程池申请线程,有则使用线程池的线程执行任务,如果没有就等着,其他在执行的任务执行完毕后释放线程,等待的任务就可以使用释放的线程来执行操作了. from concurrent.futures import ThreadPoolExecutor import requests import time def taks(u…
一.线程池 1.concurrent.futures模块 介绍 concurrent.futures模块提供了高度封装的异步调用接口 ThreadPoolExecutor:线程池,提供异步调用 ProcessPoolExecutor: 进程池,提供异步调用 在这个模块中进程池和线程池的使用方法完全一样 这里就只介绍ThreadPoolExecutor的使用方法,顺便对比multiprocessing的Pool进程池 .基本方法 submit(fn, *args, **kwargs):异步提交任务…
一.需求 最近准备爬取某电商网站的数据,先不考虑代理.分布式,先说效率问题(当然你要是请求的太快就会被封掉,亲测,400个请求过去,服务器直接拒绝连接,心碎),步入正题.一般情况下小白的我们第一个想到的是for循环,这个可是单线程啊.那我们考虑for循环直接开他个5个线程,问题来了,如果有一个url请求还没有回来,后面的就干等,这么用多线程等于没用,到处贴创可贴. 二.性能考虑 确定要用多线程或者多进程了,那我们到底是用多线程还是多进程,有些人对多进程和多线程有一定的偏见,就因为python的G…
import threadingimport time ###############################多线程################################----------函数无参数,子线程等待方式 循环joindef run(): time.sleep(2) print("正在执行" ,threading.current_thread())starttime=time.time()threads=[]for i in range(3): t=thr…
import time from comcurrent.futures import ThreadPoolExecutor,ProcessPoolExccoutor#这个方法可以用进程池或者线程池 def f1(i): print(i) time.sleep(2) if __name__ == '__main__': tp = ThreadPoolExecutor(4)#指定线程池的大小          #如果改成进程池则是ProcessPoolExecutor lst = [] for i…
#python自带的线程池 from multiprocessing.pool import ThreadPool #注意ThreadPool不在threading模块下 from multiprocessing import Pool #导入进程池 def func(*args,**kwargs): print(args,kwargs) pool=ThreadPool(2) #pool=Pool(2) ##进程池 pool.apply_async(func,args=(1,2),kwds={}…
1.定时器 指定n秒后,执行任务 from threading import Timer,current_thread import os def hello(): print("%s hello, world"%os.getpid()) print("%s hello, world"%current_thread().name) t = Timer(3, hello) t.start() # after 1 seconds, "hello, world&…
进程池的使用 为什么要有进程池?进程池的概念. 在程序实际处理问题过程中,忙时会有成千上万的任务需要被执行,闲时可能只有零星任务. 那么在成千上万个任务需要被执行的时候,我们就需要去创建成千上万个进程么?首先,创建进程需要消耗时间,销毁进程也需要消耗时间. 第二即便开启了成千上万的进程,操作系统也不能让他们同时执行,这样反而会影响程序的效率. 因此我们不能无限制的根据任务开启或者结束进程.那么我们要怎么做呢? 在这里,要给大家介绍一个进程池的概念,定义一个池子,在里面放上固定数量的进程,有需求来…
day36 死锁现象与递归锁 死锁现象 是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去.此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程,如下就是死锁 from threading import Thread from threading import Lock import time lock_A = Lock() lock_B = Lock() class MyThread(Thread): d…
进程池: 进程池的使用有四种方式:apply_async.apply.map_async.map.其中apply_async和map_async是异步的,也就是启动进程函数之后会继续执行后续的代码不用等待进程函数返回.apply_async和map_async方式提供了一写获取进程函数状态的函数:ready().successful().get(). PS:join()语句要放在close()语句后面.   实例代码如下: # -*- coding: utf-8 -*- import multi…
引用 Python标准库为我们提供了threading和multiprocessing模块编写相应的多线程/多进程代码,但是当项目达到一定的规模,频繁创建/销毁进程或者线程是非常消耗资源的,这个时候我们就要编写自己的线程池/进程池,以空间换时间.但从Python3.2开始,标准库为我们提供了concurrent.futures模块,它提供了ThreadPoolExecutor和ProcessPoolExecutor两个类,实现了对threading和multiprocessing的进一步抽象,对…
5.GIL vs 互斥锁(*****) 1.什么是GIL(Global Interpreter Lock) GIL是全局解释器锁,是加到解释器身上的,保护的就是解释器级别的数据 (比如垃圾回收的数据) 同一个进程内的所有线程都需要先抢到GIL锁,才能执行解释器代码 2 为什么需要GIL python 中内存管理依赖于 GC(一段用于回收内存的代码) 也需要一个线程 除了你自己开的线程 系统还有一些内置线程 就算你的代码不会去竞争解释器 内置线程也可能会竞争 所以必须加上锁 3.GIL的影响 GI…
1.基于多线程实现套接字服务端支持并发 服务端 from socket import * from threading import Thread def comunicate(conn): while True: # 通信循环 try: data = conn.recv(1024) if len(data) == 0: break conn.send(data.upper()) except ConnectionResetError: break conn.close() def server…
一.关于concurrent.futures模块 Python标准库为我们提供了threading和multiprocessing模块编写相应的多线程/多进程代码,但是当项目达到一定的规模,频繁创建/销毁进程或者线程是非常消耗资源的,这个时候我们就要编写自己的线程池/进程池,以空间换时间.但从Python3.2开始,标准库为我们提供了concurrent.futures模块,它提供了ThreadPoolExecutor和ProcessPoolExecutor两个类,实现了对threading和m…
一.GIL锁 什么是GIL? 全局解释器锁,是加在解释器上的互斥锁 GC是python自带的内存管理机制,GC的工作原理:python中的内存管理使用的是应用计数,每个数会被加上一个整型的计数器,表示这个数据被引用的次数,当这个整数变为0时则表示该数据已经没有人使用,成为了垃圾数据,当内存占用达到某个阈值,GC会将其他线程挂起,然后执行垃圾清理操作,垃圾清理也是一串代码,也就需要一条线程来执行. 为什么需要GIL? 由于CPython的内存管理机制是非线程安全,于是CPython就给解释器加了一…
python3之concurrent.futures一个多线程多进程的直接对接模块,python3.2有线程池了 Python标准库为我们提供了threading和multiprocessing模块编写相应的多线程/多进程代码.从Python3.2开始,标准库为我们提供了concurrent.futures模块,它提供了ThreadPoolExecutor和ProcessPoolExecutor两个类,实现了对threading和multiprocessing的更高级的抽象,对编写线程池/进程池…
本文转载自Python并发编程之线程池/进程池--concurrent.futures模块 一.关于concurrent.futures模块 Python标准库为我们提供了threading和multiprocessing模块编写相应的多线程/多进程代码,但是当项目达到一定的规模,频繁创建/销毁进程或者线程是非常消耗资源的,这个时候我们就要编写自己的线程池/进程池,以空间换时间.但从Python3.2开始,标准库为我们提供了concurrent.futures模块,它提供了ThreadPoolE…
Python标准库为我们提供了threading和multiprocessing模块编写相应的异步多线程/多进程代码 从Python3.2开始,标准库为我们提供了concurrent.futures模块,它提供了ThreadPoolExecutor和ProcessPoolExecutor两个类ThreadPoolExecutor和ProcessPoolExecutor继承了Executor,分别被用来创建线程池和进程池的代码.实现了对threading和multiprocessing的更高级的抽…