本文大部分内容总结于其他文章 1.介绍 HOG(Histogram of Oriented Gradient)是2005年CVPR会议上,法国国家计算机科学及自动控制研究所的Dalal等人提出的一种解决人体目标检测的图像描述子,该方法使用梯度方向直方图(Histogram of Oriented Gradients,简称HOG)特征来表达人体,提取人体的外形信息和运动信息,形成丰富的特征集.   2.生成过程 1)图像归一化 归一化图像的主要目的是提高检测器对光照的鲁棒性,因为实际的人体目标可能…
梯度直方图特征(HOG) 是一种对图像局部重叠区域的密集型描述符, 它通过计算局部区域的梯度方向直方图来构成特征.Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主. HOG特征是一种局部区域描述符,它通过计算局部区域上的梯度方向直方图来构成人体特征,能够很好地描述人体的边缘.它对光照变…
在2005年CVPR上,来自法国的研究人员Navneet Dalal 和Bill Triggs提出利用Hog进行特征提取,利用线性SVM作为分类器,从而实现行人检测.而这两位也通过大量的测试发现,Hog+SVM是速度和效果综合平衡性能较好的一种行人检测方法.后来,虽然很多研究人员也提出了很多改进的行人检测算法,但基本都以该算法为基础框架.因此,Hog+SVM也成为一个里程表式的算法被写入到OpenCV中.在OpenCV2.0之后的版本,都有Hog特征描述算子的API,而至于SVM,早在OpenC…
一.论文 综述类的文章 [1]P.Dollar, C. Wojek,B. Schiele, et al. Pedestrian detection: an evaluation of the state of the art [J].IEEE Transactions on PatternAnalysis andMachine Intelligence, 2012, 34(4): 743-761. [2]M. Enzweiler, and D.Gavrila. Monocular pedestr…
PASCAL VOC数据集 PASCAL VOC为图像识别和分类提供了一整套标准化的优秀的数据集,从2005年到2012年每年都会举行一场图像识别challenge 默认为20类物体 1 数据集结构 ①JPEGImages JPEGImages文件夹中包含了PASCAL VOC所提供的所有的图片信息,包括了训练图片和测试图片. ref:PASCAL VOC数据集分析 ②Annotations Annotations文件夹中存放的是xml格式的标签文件,每一个xml文件都对应于JPEGImages…
在行为识别的iDT算法中,主要使用了HOG,HOF,MBH和Dense Trajectory四种特征.这里主要对前三者进行介绍. 1. HOG特征(histogram of gray) 此处HOG特征的介绍转载了zouxy09大神的文章  http://blog.csdn.NET/zouxy09/article/details/7929348/ 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.…
其实在深度学习中我们已经介绍了目标检测和目标识别的概念.为了照顾一些没有学过深度学习的童鞋,这里我重新说明一次:目标检测是用来确定图像上某个区域是否有我们要识别的对象,目标识别是用来判断图片上这个对象是什么.识别通常只处理已经检测到对象的区域,例如,人们总是会在已有的人脸图像的区域去识别人脸. 传统的目标检测方法与识别不同于深度学习方法,后者主要利用神经网络来实现分类和回归问题.在这里我们主要介绍如何利用OpecnCV来实现传统目标检测和识别,在计算机视觉中有很多目标检测和识别的技术,这里我们主…
HOG SVM 车辆检测 近期需要对卡口车辆的车脸进行检测,首先选用一个常规的检测方法即是hog特征与SVM,Hog特征是由dalal在2005年提出的用于道路中行人检测的方法,并且取的了不错的识别效果.在人脸检测方面目前主流的方法,先不考虑复杂的深度学习,大多采用Haar和Adaboost的手段来实现.我接下来将会用着两种方法来实现对卡口的车辆检测. 首先引出 Hog特征,Hog特征是梯度方向直方图,是一种底层的视觉特征,主要描述的是图像中的梯度分布情况,而梯度分布信息主要是集中在图像中不同内…
之前的文章行人计数.计次提到HOG特征这个概念,这两天看了一下原版的论文,了解了一下HOG特征的原理,并依据自己的理解将这种方法的流程写了下来,假设有不正确的地方欢迎指正. HOG(Histograms of Oriented Gradients)特征的基本思想:The basic idea is that local object appearance and shape can often be characterized rather well by the distribution of…
SIFT :scale invariant feature transform HOG:histogram of oriented gradients 这两种方法都是基于图像中梯度的方向直方图的特征提取方法. 1. SIFT 特征  实现方法: SIFT 特征通常与使用SIFT检测器得到的感兴趣点一起使用.这些感兴趣点与一个特定的方向和尺度(scale)相关联.通常是在对一个图像中的方形区域通过相应的方向和尺度变换后,再计算该区域的SIFT特征. 首先计算梯度方向和幅值(使用Canny边缘算子在…
以上是我上一篇文章中的代码实现,里面分别用了opencv中的SVM和LibSVM,opencv的SVM用起来更方便,但貌似内部其实也是基于Libsvm,同样的参数训练出来的结果是一致的,里面有Libsvm的调用过程,如果用libsvm需要在工程里面添加libsvm的源码文件分别是svm.h和svm.cpp,林智仁的库里自带的那两个核心文件即可. libsvm的用法让人更感觉是在用C的写法,opencv封装过的易用性更好,稍后我会把工程文件放到github上供大家下载,若有什么错误,还请批评指教~…
树莓PI远程控制摄像头请参考前文:http://www.cnblogs.com/yuliyang/p/3561209.html 参考:http://answers.opencv.org/question/133/how-do-i-access-an-ip-camera/ http://blog.youtueye.com/work/opencv-hog-peopledetector-trainning.html 项目环境:opencv2.8  ,debian, QT 代码: 运行: yuliyan…
这里我们讲一下使用HOG的方法进行手写数字识别: 首先把 代码分享出来: hog1.m function B = hog1(A) %A是28*28的 B=[]; [x,y] = size(A); %外圈补0 A(:,y+) = ; A(x+,:) = ; :x deltax(:,i)=A(:,i+)-A(:,i); end :y deltay(i,:)=A(i+,:)-A(i,:); end : : Px=deltax(i*-:i*+,j*-:j*+); Py=deltay(i*-:i*+,j*…
目前基于机器学习方法的行人检测的主流特征描述子之一是HOG(Histogram of Oriented Gradient, 方向梯度直方图).HOG特征是用于目标检测的特征描述子,它通过计算和统计图像局部区域的梯度方向直方图来构成特征,用这些特征描述原始图像. HOG的核心思想是所检测的局部物体外形能够被光强梯度或边缘方向的分布所描述.通过将整幅图像分割成小的连接区域(称为cells),每个cell生成一个方向梯度直方图或者cell中pixel的边缘方向,这些直方图的组合可表示出(所检测目标的目…
这几个月一直在忙着做大论文,一个基于 SVM 的新的目标检测算法.为了做性能对比,我必须训练一个经典的 Dalal05 提出的行人检测器,我原以为这个任务很简单,但是我错了. 为了训练出一个性能达标的行人检测器,我花了半个月的时间,中间遇到各种 BUG 我就不提了,下面只说正确的步骤.(基于 MATLAB 环境,但是没有代码,请您自己写~) 步骤 1. 训练数据集及其它准备工作 训练检测器的正例(Positive examples)数据库最好采用"全图+标注"的形式,不要是那种切出来的…
HOG+SVM流程 1.提取HOG特征 灰度化 + Gamma变换(进行根号求解) 计算梯度map(计算梯度) 图像划分成小的cell,统计每个cell梯度直方图 多个cell组成一个block, 特征归一化 多个block串接,并归一化 2.训练SVM分类器…
(转载请注明出处:http://blog.csdn.net/zhazhiqiang/ 未经允许请勿用于商业用途) 一.理论 1.HOG特征描述子的定义:     locally normalised histogram of gradient orientation in dense overlapping grids,即局部归一化的梯度方向直方图,是一种对图像局部重叠区域的密集型描述符, 它通过计算局部区域的梯度方向直方图来构成特征.   2.本质:     Histogram of Orie…
一.纸 评论文章分类: [1] D. Geronimo, and A. M.Lopez. Vision-based Pedestrian Protection Systems for Intelligent Vehicles, BOOK, 2014. [2] P.Dollar, C. Wojek,B. Schiele, et al. Pedestrian detection: an evaluation of the state of the art [J].IEEE Transactions…
整理一下我个人觉得比较好的HOG博文 博文1:OpenCV HOGDescriptor: 参数与图解 http://blog.csdn.NET/raodotcong/article/details/6239431 博文2:opencv源码解析:各个参数讲解 http://www.cnblogs.com/tornadomeet/archive/2012/08/15/2640754.html 博文3:hog特征可视化:matlab 与 C++ http://blog.csdn.Net/u011285…
结合这周看的论文,我对这周研究的Histogram of oriented gradients(HOG)谈谈自己的理解: HOG descriptors 是应用在计算机视觉和图像处理领域,用于目标检測的特征描写叙述器.这项技术是用来计算局部图像梯度的方向信息的统计值.这样的方法跟边缘方向直方图(edge orientation histograms).尺度不变特征变换(scale-invariant feature transform descriptors)以及形状上下文方法( shape c…
最近在做的项目有用到HOG+SVM这一方面的知识,参考相关论文和网上一些博文在此对HOG特征进行下总结. 参考资料: HOG的经典论文:Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]//Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on. IEEE, 2005,…
背景引言 方向梯度直方图(Histogram of Oriented Gradient,HOG)是用于在计算机视觉和图像处理领域,目标检测的特征描述子.该项技术是用来计算图像局部出现的方向梯度次数或信息进行计数.此种方法跟边缘方向直方图.尺度不变特征变换以及形状上下文方法有很多相似.但与它们的不同点是:HOG的计算基于一致空间的密度矩阵来提高准确率.即:在一个网格密集的大小统一的细胞单元上计算,而且为了提高性能,还采用了重叠的局部对比度归一化技术.HoG特征与SVM分类器结合,已经被广泛应用于图…
一.概述 前面一个系列,我们对车牌识别的相关技术进行了研究,但是车牌识别相对来说还是比较简单的,后续本人会对人脸检测.人脸识别,人脸姿态估计和人眼识别做一定的学习和研究.其中人脸检测相对来说比较简单,譬如Dlib库中直接封装了现成的库函数 frontal_face_detector 供相关人员使用,但是Dlib的运行速率并不是很高,另外于仕琪老师的 libfaceDetection 库具有较高的识别率和相对较快的运行速度,具体可以从github 上获取 https://github.com/Sh…
1.介绍 HOG(Histogram of Oriented Gradient)是2005年CVPR会议上,法国国家计算机科学及自动控制研究所的Dalal等人提出的一种解决人体目标检测的图像描述子,该方法使用梯度方向直方图(Histogram of Oriented Gradients,简称HOG)特征来表达人体,提取人体的外形信息和运动信息,形成丰富的特征集. 2.生成过程 1)图像归一化 归一化图像的主要目的是提高检测器对光照的鲁棒性,因为实际的人体目标可能出现的各种不同的场合,检测器,必须…
matlab练习程序(HOG方向梯度直方图) HOG(Histogram of Oriented Gradient)方向梯度直方图,主要用来提取图像特征,最常用的是结合svm进行行人检测. 算法流程图如下(这篇论文上的): 下面我再结合自己的程序,表述一遍吧: 1.对原图像gamma校正,img=sqrt(img); 2.求图像竖直边缘,水平边缘,边缘强度,边缘斜率. 3.将图像每16*16(取其他也可以)个像素分到一个cell中.对于256*256的lena来说,就分成了16*16个cell了…
前一段时间开始了解HoG跟SVM行人识别,看了很多包括Dalal得前辈的文章及经验分享,对HoG理论有了些初步的认识. HoG 的全称是 Histogram of Oriented Gradient, 直译过来也就是梯度方向直方图. 就是计算各像素的梯度方向,统计成为直方图来作为特征表示目标. 下面简述一下利用HoG + SVM 实现目标检测的简要步骤 Step1:获取正样本集并用hog计算特征得到hog特征描述子.例如进行行人检测,可用IRINA等行人样本集,提取出行人的描述子. Step2:…
原地址:http://blog.csdn.net/chlele0105/article/details/11991533 梯度直方图特征(HOG) 是一种对图像局部重叠区域的密集型描述符,它通过计算局部区域的梯度方向直方图来构成特征.Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主.…
论文源址:https://arxiv.org/abs/1612.03144 代码:https://github.com/jwyang/fpn.pytorch 摘要 特征金字塔是用于不同尺寸目标检测中的基本组件.但由于金字塔表征的特征需要消耗较多的内存及计算资源,因此,深度学习尽量避免使用金字塔特征.本文利用深度卷积网络中自带的多尺寸信息构建特征金字塔.本文搭建了具有横向连接的自上而下的结构FPN,从而在所有尺寸上构建高层次的语义特征.本文在Faster R-CNN的基础结构上增加了FPN结构,并…
Histogram of Oriented Gridients,缩写为HOG,是目前计算机视觉.模式识别领域很常用的一种描述图像局部纹理的特征.这个特征名字起的也很直白,就是说先计算图片某一区域中不同方向上梯度的值,然后进行累积,得到直方图,这个直方图呢,就可以代表这块区域了,也就是作为特征,可以输入到分类器里面了.那么,接下来介绍一下HOG的具体原理和计算方法,以及一些引申. 1.分割图像 因为HOG是一个局部特征,因此如果你对一大幅图片直接提取特征,是得不到好的效果的.原理很简单.从信息论角…