Linux大页内存管理等---菜鸟初学】的更多相关文章

1. 查看linux的内存情况: free -m 2. 查看是否开启大页的方法: cat /proc/meminfo |grep -i HugePage AnonHugePages: 276480 kBHugePages_Total: 0HugePages_Free: 0HugePages_Rsvd: 0HugePages_Surp: 0Hugepagesize: 2048 kB 含义 HugePages_Total: 0 总共大页数目HugePages_Free: 0 空闲数目HugePage…
内核版本:linux-2.6.11 Linux在加载一个可执行程序的时候做了种种复杂的工作,内存分配是其中非常重要的一环,作为一个linux程序员必然会想要知道这个过程到底是怎么样的,内核源码会告诉你这一切. 线性区 一个可执行程序,是经过编译器处理后的遵守一定规则的数据.符号表和指令序列的组合,当linux加载一个可执行程序的时候,会为其创建一个新的进程,其对应的进程描述符task_struct中会保存许多资源的描述符,其中的mm_struct就是这个进程的内存描述符,用来管理该进程拥有的所有…
昨天分析的进程的代码让自己还在头昏目眩,脑子中这几天都是关于Linux内核的,对于自己出现的一些问题我会继续改正,希望和大家好好分享,共同进步.今天将会讲诉Linux如何追踪和管理用户空间进程的可用内存和内核的可用内存,还会讲到内核对内存分类的方式以及如何决定分配和释放内存,内存管理是应用程序通过软硬件协助来访问内存的一种方式,这里我们主要是介绍操作系统正常运行对内存的管理.插个话题,刚才和姐姐聊天,她快结婚了,说起了自己的初恋,可能是一句很搞笑的话,防火防盗防初恋,,嘎嘎,这个好像是的吧,尽管…
如题目所示,为什么要称作“内核内存管理”,因为内核所需要的内存和用户态所需要的内存,这两者在管理上是不一样的. 这篇文章描述内核的内存管理,用户态的内存管理在以后的文章中讲述. 首先简单的说明一下下面的描述所需要的基础知识: 1,以下描述适用于32位系统 2,32位系统的线性地址(或称为逻辑地址,下面统称为线性地址)0-4G,其中的3G-4G的地址空间由内核使用.宏PAGE_OFFSET 为0xC0000000(3G),也是内核空间和用户空间的分界.但是linux内核并没有把整个1G空间用于线性…
这是一篇由密歇根大学的Neha Agarwal 和 Thomas F. Wenisch,发表在计算机系统顶会ASLOS的论文,Thermostat: Application-transparent Page Management for Two-tiered Main Memory.一种双层存储结构的透明巨页内存管理机制. 随着科技的发展,新的内存技术出现了,它比普通 DRAM 更加密集和便宜,并且已经重新引起了对两级主内存方案的兴趣.我们知道,把不经常访问的应用程序数据存放在这种内存方案中,可…
Linux内核之内存管理 Linux利用的是分段+分页单元把逻辑地址转换为物理地址; RAM的某些部分永久地分配给内核, 并用来存放内核代码以及静态内核数据结构; RAM的其余部分称动态内存(dynamic memory); 整个系统的性能取决于如何有效的管理动态内存; 尽力优化对动态内存的使用, 尽量做到需要时使用, 不需要时释放; 内核如何给自己分配动态内存: 页框管理和内存区管理对连续内存去处理的两种不同的技术; 非连续区的管理是处理不连续内存去的一种技术; 内存管理必须知道的几个主题技术…
目录 文章目录 目录 前文列表 虚拟存储器系统 页式虚拟存储器 大页内存 Linux 的大页内存 大页的实现原理 大页内存配置 透明巨型页 THP 大页面对内存的影响 Nova 虚拟机的大页内存设置 实战经验 参考文档 前文列表 <多进程.多线程与多处理器计算平台的性能问题> <OpenStack 高性能虚拟机之 CPU 绑定> <OpenStack 高性能虚拟机之 NUMA 亲和> 虚拟存储器系统 在早期的计算机系统中,程序员会直接对主存储器的物理地址进行操作,这种编…
参考: [development][dpdk][hugepage] 为不同的结点分配不同大小的大页内存 完成了以上内容之后, 下一步需要做的是挂载, 大页内存只有被挂载了之后,才能被应用程序使用. 挂载方法如下: 参考dpdk文档:  http://dpdk.org/doc/guides/linux_gsg/sys_reqs.html mkdir /mnt/huge mount -t hugetlbfs nodev /mnt/huge 如果是有1G的大页, 需要给定默认参数 pagesize=1…
今天给大家介绍一种比较新奇的程序性能优化方法-大页内存(HugePages),简单来说就是通过增大操作系统页的大小来减小页表,从而避免快表缺失.这方面的资料比较贫乏,而且网上绝大多数资料都是介绍它在Oracle数据库中的应用,这会让人产生一种错觉:这种技术只能在Oracle数据库中应用.但其实,大页内存可以算是一种非常通用的优化技术,应用范围很广,针对不同的应用程序,最多可能会带来50%的性能提升,优化效果还是非常明显的.在本博客中,将通过一个具体的例子来介绍大页内存的使用方法. 在介绍之前需要…
这个事来自dpdk, 所以, 先参考. http://dpdk.org/doc/guides/linux_gsg/sys_reqs.html 当前, 假设你已经读过上边内容, 知道大页内存时候, dpdk是什么,以及怎样使用. 我们已经知道, 为系统分配大页内存有两种大小: 2M 和 1G 1G的只有64位系统支持, 并且我们推荐64位的操作系统尽量使用1G的page 同时, 我们还知道配置大页内存,有两个时机 boot time 和 run time boot time的配置写在grub里,给…
原文转载自:http://blog.csdn.net/yutianzuijin/article/details/41912871 今天给大家介绍一种比较新奇的程序性能优化方法—大页内存(HugePages),简单来说就是通过增大操作系统页的大小来减小页表,从而避免快表 缺失.这方面的资料比较贫乏,而且网上绝大多数资料都是介绍它在Oracle数据库中的应用,这会让人产生一种错觉:这种技术只能在Oracle数据库中 应用.但其实,大页内存可以算是一种非常通用的优化技术,应用范围很广,针对不同的应用程…
一.在解释什么情况下需要开启大页和为啥需要开启大页前先了解下Linux下页的相关的知识:以下的内容是基于32位的系统,4K的内存页大小做出的计算1)目录表,用来存放页表的位置,共包含1024个目录entry,每个目录entry指向一个页表位置,每个目录entry,4b大小,目录表共4b*1024=4K大小2)页表,用来存放物理地址页的起始地址,每个页表entry也是4b大小,每个页表共1024个页表entry,因此一个页表的大小也是4K,共1024个页表,因此页表的最大大小是1024*4K=4M…
HugePages是通过使用大页内存来取代传统的4kb内存页面,使得管理虚拟地址数变少,加快了从虚拟地址到物理地址的映射以及通过摒弃内存页面的换入换出以提高内存的整体性能.尤其是对于8GB以上的内存以及较大的Oracle SGA size,建议配值并使用HugePage特性.本文基于x86_64 Linux下来描述如何配值 HugePages. 1.Hugepage的引入    操作系统对于数据的存取直接从物理内存要比从磁盘读写数据要快的多,但是物理内存是有限的,这样就引出了物理内存与虚拟内存的…
linux虚拟内存管理功能 ? 大地址空间:? 进程保护:? 内存映射:? 公平的物理内存分配:? 共享虚拟内存.实现结构剖析   (1)内存映射模块(mmap):负责把磁盘文件的逻辑地址映射到虚拟地址,以及把虚拟地址映射到物理地址 (2)交换模块(swap)负责控制内存内容的换入与换出,淘汰最近没访问的页,保留最近访问的页. (3)core(核心内存管理模块):负责内存管理功能. (4)结构特定模块:实现虚拟内存的物理基础   内核空间和用户空间 Linux简化了分段机制,使得虚拟地址跟线性地…
转自:https://zohead.com/archives/linux-kernel-learning-memory-management/ 本文同步自(如浏览不正常请点击跳转):https://zohead.com/archives/linux-kernel-learning-memory-management/ 接着之前的 Linux kernel 学习步伐,来到极其重要的内存管理部分,继续本文内容,需要先了解内存寻址的基础知识,见之前的 [内存寻址] 博文. 1.内存页及内存区域: 正如…
内核如果给自己分配动态内存 动态内存:RAM的某些部分被永久打分配给内核,用来存放内核代码以及静态内核数据结构:剩余的部分被称为动态内存 连续物理内存区管理: 页框管理:1.页大小的选择,通常情况下主存和磁盘之间传输小数据块更高效,所以Linux选择4kb点页框2.页描述符:page结构,32字节:存放在mem_map数组中:占整个RAM的大概1%空间,即每页框(4kB)一个描述符(32B),1/128.3.非一致内存访问(NUMA):CPU对不同内存单元的访问时间不相同:因为CPU和内存的相对…
转自:https://zohead.com/archives/linux-kernel-learning-memory-management/ 本文同步自(如浏览不正常请点击跳转):https://zohead.com/archives/linux-kernel-learning-memory-management/ 接着之前的 Linux kernel 学习步伐,来到极其重要的内存管理部分,继续本文内容,需要先了解内存寻址的基础知识,见之前的 [内存寻址] 博文. 1.内存页及内存区域: 正如…
       MMU具有物理地址和虚拟地址转换,内存访问权限保护等功能.这使得Linux操作系统能单独为每个用户进程分配独立的内存空间并且保证用户空间不能访问内核空间的地址,为操作系统虚拟内存管理模块提供硬件基础. Linux内存管理        在Linux操作系统中,进程的4G空间被分成两个部分----用户空间和内核空间.用户空间一般为0~3GB(即PAGE_OFFSET,在X86系统中等于0xC0000000),而剩余的3GB~4GB为内核空间.用户进程在通常情况下只能访问用户空间的虚拟…
1.  逻辑地址 线性地址 物理地址 段式管理: 16位CPU,20根地址总线,可寻址1M内存,但是只有16位的寄存器,64K. 逻辑地址  =  段基地址 + 段内偏移地址 物理地址 PA  = 段寄存的值 * 16  + 逻辑地址 段式管理: 32位CPU,两种模式  实模式 + 保护模式 实模式 和 16位CPU一样,段寄存器的值*16就是段地址 保护模式: 段基地址32位,每个段都有4G容量,段寄存器的值是一个选择器,间接指出一个32位的段地址. 页式管理: 线性地址被分为固定长度的组,…
前一段时间看了<深入理解Linux内核>对其中的内存管理部分花了不少时间,但是还是有很多问题不是很清楚,最近又花了一些时间复习了一下,在这里记录下自己的理解和对Linux中内存管理的一些看法和认识. 我比较喜欢搞清楚一个技术本身的发展历程,简而言之就是这个技术是怎么发展而来的,在这 个技术之前存在哪些技术,这些技术有哪些特点,为什么会被目前的技术所取代,而目前的技术又解决了之前的技术所存在的哪些问题.弄清楚了这些,我们才能比 较清晰的把握某一项技术.有些资料在介绍某个概念的时候直接就介绍这个概…
问题不能拖,我这就来学习一下吧,争取一次搞定. 在任何程序设计环境及语言中,内存管理都十分重要. 内存管理的基本概念 分析C语言内存的分布先从Linux下可执行的C程序入手.现在有一个简单的C源程序hello.c 1 #include 2 #include 3 int var1 = 1; 4 5 int main(void) { 6 int var2 = 2; 7 printf("hello, world!\n"); 8 exit(0); 9 } 经过gcc hello.c进行编译之后…
内核版本:linux-2.6.11 内存区和内存对象 伙伴系统是linux用于满足对不同大小块内存分配和释放请求的解决方案,它为slab分配器提供页框分配请求的实现. 如果我们需要请求具有连续物理地址和任意长度的内存单元序列时,即不定大小的内存区时,则需要在伙伴系统之上提供一层更细粒度的管理方案. Linux在分配内存的时候,会将这部分内存初始化成一定的类型,即内存对象,例如信号.进程描述符.文件描述符等等,在释放的时候,会进行析构. 然而进行初始化和析构占用的时间已然超出了分配这部分内存的时间…
linux kernel 内存管理是个很大的话题,这里记录一点个人关于slab模块的一点思考总结. 有些书把slab介绍成高速缓存,这会让人和cache,特别是cpu cache混淆,造成误解.slab最开始的目的是解决频繁内存分配的效率问题,所以把频繁分配回收的对象,预先分配并初始化好,后面的对象分配回收主要就是对象管理数据的维护工作.linux kernel 通过把整个物理内存划分成以一个个page进行管理,管理器就是伙伴系统,它的最小分配单元就是page.但是对于小于page的内存分配,如…
1.1 进程在虚拟空间中的布局 32位的操作系统虚拟空间的大小为 4GB,即每个进程在系统中分配的虚拟空间大小为4GB.这4GB的大小被分为了两个部分: 内核空间:1GB,内核起的进程 用户空间:3GB,主要是普通用户起的进程 物理内存和虚拟内存之间的交互: 虚拟地址和物理地址通过 CPU 的内存管理单元(MMU)进行转换. 1.1.1 虚拟地址 辅存:物理内存不够用时,在硬盘上临时创建的一个分区,用来存放进程使用率很低的数据,要用的时候再从辅存中提取进硬盘中,比如ubuntu 中的交换空间 1…
1.1什么是内存管理 内存管理是对计算机内存进行分配和使用的技术.内存管理主要存在于多任务的操作系统中,因为内存资源极其有限.须要在不同的任务之间共享内存,内存管理的存在就是要高效.高速的非配内存,并在适当的时候回收和释放内存.以保各个任务正常的运行.最常见的内存管理机制有:段式内存管理和页式内存管理. 1.2内存中的地址 早期的16位计算中.寄存器的位宽仅仅有16位.为了能訪问到1M Bit的内存空间,CPU就採用了分段的方式来管理内存,将1M的内存分为若干个逻辑段,每一个逻辑段的起始地址必须…
前面几篇介绍了进程的一些知识,从这篇开始介绍内存.文件.IO等知识,发现更不好写哈哈.但还是有必要记录下自己的所学所思.供后续翻阅,同时写作也是一个巩固的过程. 这些知识以前有文档涉及过,但是角度不同,这个系列站的角度更底层,基本都是从Linux内核出发,会更深入.所以当你都读完,然后再次审视这些功能的实现和设计时,我相信你会有种豁然开朗的感觉. 1.页 内核把物理页作为内存管理的基本单元. 尽管处理器的最小处理单位是字(或者字节),但是MMU(内存管理单元,管理内存并把虚拟地址转换为物理地址的…
内核刚开始启动的时候如果一步到位写一个很完善的内存管理系统是相当麻烦的.所以linux先建立了一个非常简单的临时内存管理系统bootmem,有了这个bootmem就可以做简单的内存分配/释放操作,在bootmem的基础上再做一个完善的内存管理系统就比较简单了.bootmem的本质就是位图,一个bit代表一个页框(page frame),页框分配出去就把相对应的bit置位,页框回收就把相应的bit复位.linux内核直接管理的内存是1G,所以这个位图需要2^32/4096/8=128k字节,在我另…
C 编程中,经常需要操作的内存可分为下面几个类别: 堆栈区(stack):由编译器自动分配与释放,存放函数的参数值,局部变量,临时变量等等,它们获取的方式都是由编译器自动执行的 堆区(heap):一般由程序员分配与释放,基程序员不释放,程序结束时可能由操作系统回收(C/C++没有此等回收机制,Java/C#有),注意它与数据结构中的堆是两回事,分配方式倒是类似于链表. 全局区(静态区)(static):全局变量和静态变量的存储是放在一块儿的,初始化的全局变量和静态变量在一块区域,未初始化的全局变…
转自知乎专栏:https://zhuanlan.zhihu.com/p/51855842?utm_source=wechat_session&utm_medium=social&utm_oi=42141350887424 一.linux内存管理机制 Linux中可以借助brk或mmap函数从用户空间中申请连续内存. Linux寻址空间(32位),用户空间为3GB,内核空间为1GB 通过调用brk(0)可以获取指向用户空间某一地址的指针,随后调用brk(len)可以在原指针地址的基础上移动该…
本文主要解说缺页处理程序,凝视足够具体,不再解释. //以下函数将一页内存页面映射到指定线性地址处,它返回页面的物理地址 //把一物理内存页面映射到线性地址空间指定处或者说把线性地址空间指定地址address处的页面映射到主内存区页面page上.主要工作是在相关也文件夹项和页表项中设置指定页面的信息.在处理缺页异常函数do_no_page中会调用这个函数. 參数:address--线性地址:page--是分配的主内存区中某一页面指针 static unsigned long put_page(u…