如何利用Hadoop存储小文件】的更多相关文章

************************************************************************************************************ 1. HDFS上的小文件问题 小文件是指文件大小明显小于HDFS上块(block)大小(默认64MB)的文件.如果存储小文件,必定会有大量这样的小文件,否则你也不会使用Hadoop(If you’re storing small files, then you probably h…
Block是文件块,HDFS中是以Block为单位进行文件的管理的,一个文件可能有多个块,每个块默认是3个副本,这些块分别存储在不同机器上.块与文件之前的映射关系会定时上报Namenode.HDFS中一个块的默认大小是64M,其大小由参数dfs.block.size控制.这里面先引申几个问题出来: 问题1:块大小要怎么设置为一个合理值,过大设置和过小设置有什么影响? 问题2:如果一个文件小于所设置的块大小,实际占用空间会怎样? 问题3:一个Namenode最多能管理多少个块,什么时候会达到瓶颈?…
小文件指的是那些size比HDFS的block size(默认64M)小的多的文件.不论什么一个文件,文件夹和block,在HDFS中都会被表示为一个object存储在namenode的内存中, 每一个object占用150 bytes的内存空间. 所以,假设有10million个文件, 每一个文件相应一个block,那么就将要消耗namenode 3G的内存来保存这些block的信息. 假设规模再大一些,那么将会超出现阶段计算机硬件所能满足的极限. 控制小文件的方法有: 1.应用程序自己控制…
1.Hadoop HAR 将众多小文件打包成一个大文件进行存储,并且打包后原来的文件仍然可以通过Map-Reduce进行操作,打包后的文件由索引和存储两大部分组成: 缺点: 一旦创建就不能修改,也不支持追加操作,还不支持文档压缩,当有新文件进来以后,需要重新打包. 2.SequeuesFile 适用于非文体格式,可作小文件容器,并可压缩: 3.CombineFileInputFormat 将多个文件合并成一个split作为输入,减少map输入与HDFS块的耦合: 4.Java代码实现,使用HDF…
原文地址:https://www.cnblogs.com/ballwql/p/8944025.html HDFS总体架构 在介绍文件存储方案之前,我觉得有必要先介绍下关于HDFS存储架构方面的一些知识,在对架构有初步了解后,才会明白为什么要单独针对小文件展开介绍,小文件存储和其它文件存储区别在什么地方. 这里我只是就Hadoop生态中的存储层展开介绍,对于其它部分本文暂未描述.众所周知,HDFS是目前非常流行的分布式文件存储系统,其逻辑架构如下图所示: HDFS也是典型的Master/Slave…
小文件指的是那些size比HDFS的block size(默认64M)小的多的文件.如果在HDFS中存储小文件,那么在HDFS中肯定会含有许许多多这样的小文件(不然就不会用hadoop了).而HDFS的问题在于无法很有效的处理大量小文件. 任何一个文件,目录和block,在HDFS中都会被表示为一个object存储在namenode的内存中,没一个object占用150 bytes的内存空间.所以,如果有10million个文件,没一个文件对应一个block,那么就将要消耗namenode 3G…
项目背景 在实际项目中,输入数据往往是由许多小文件组成,这里的小文件是指小于HDFS系统Block大小的文件(默认128M),早期的版本所定义的小文件是64M,这里的hadoop-2.2.0所定义的小文件是128M.然而每一个存储在HDFS中的文件.目录和块都映射为一个对象,存储在NameNode服务器内存中,通常占用150个字节. 如果有1千万个文件,就需要消耗大约3G的内存空间.如果是10亿个文件呢,简直不可想象.所以在项目开始前, 我们要先了解一下 hadoop 处理小文件的各种方案,然后…
hadoop小文件存档1.HDFS存档小文件弊端 每个文件均按块存储,每个块的元数据存储在NameNode的内存中,因此HDFS存储小文件会非常低效.因为大量的小文件会耗尽NameNode中的大部分内存.但注意,存储小文件所需的磁盘容量和数据块的大小无关.例如,一个1M的文件设置为128M的块存储,实际使用的是1M的磁盘你空间.2.解决存储小文件办法之一 HDFS存文档文件或HAR文件,是一个更高效的文件存档工具,它将文件存入HDFS块,在减少NameNode内存使用的同时,允许对文件进行透明的…
自动驾驶是最近几年的热门领域,专注于自动驾驶技术的创业公司.新造车企业.传统车厂都在这个领域投入了大量的资源,推动着 L4.L5 级别自动驾驶体验能尽早进入我们的日常生活. 自动驾驶技术实现的核心环节是自动驾驶模型的训练,训练数据是由汽车实际采集回来的真实道路驾驶视频,数据规模有数 PB 到数十 PB 之多.在模型训练之前,先要对这些原始视频进行处理,截取其中的关键帧保存为照片.然后再由专业数据标注团队在图片上标记关键信息,比如红绿灯.道路标记等.最终经过标记的数十亿图片和标记数据成为真正要「喂…
海量小文件存储(简称LOSF,lots of small files)出现后,就一直是业界的难题,众多博文(如[1])对此问题进行了阐述与分析,许多互联网公司也针对自己的具体场景研发了自己的存储方案(如taobao开源的TFS,facebook自主研发的Haystack),还有一些公司在现有开源项目(如hbase,fastdfs,mfs等)基础上做针对性改造优化以满足业务存储需求: 一. 通过对若干分布式存储系统的调研.测试与使用,与其它分布式系统相比,海量小文件存储更侧重于解决两个问题: 1.…