Flink消费kafka】的更多相关文章

1. 完成的场景 在很多大数据场景下,要求数据形成数据流的形式进行计算和存储.上篇博客介绍了Flink消费Kafka数据实现Wordcount计算,这篇博客需要完成的是将实时计算的结果写到redis.当kafka从其他端获取数据立刻到Flink计算,Flink计算完后结果写到Redis,整个过程就像流水一样形成了数据流的处理 2. 代码 添加第三方依赖 <dependencies> <!-- https://mvnrepository.com/artifact/org.apache.fl…
1.概述 最近有同学留言咨询,Flink消费Kafka的一些问题,今天笔者将用一个小案例来为大家介绍如何将Kafka中的数据,通过Flink任务来消费并存储到HDFS上. 2.内容 这里举个消费Kafka的数据的场景.比如,电商平台.游戏平台产生的用户数据,入库到Kafka中的Topic进行存储,然后采用Flink去实时消费积累到HDFS上,积累后的数据可以构建数据仓库(如Hive)做数据分析,或是用于数据训练(算法模型).如下图所示: 2.1 环境依赖 整个流程,需要依赖的组件有Kafka.F…
Flink消费Kafka https://blog.csdn.net/boling_cavalry/article/details/85549434 https://www.cnblogs.com/smartloli/p/12499142.html Flink消费rocketMQ https://github.com/apache/rocketmq-externals/tree/master/rocketmq-flink…
目录 0.目的 1.本地测试 2.线上测试 提交作业 0.目的 测试flink消费kafka的几种消费策略 kafkaSource.setStartFromEarliest() //从起始位置 kafkaSource.setStartFromLatest() //从最新位置 kafkaSource.setStartFromTimestamp("起始时间") //从指定时间开始消费 kafkaSource.setStartFromGroupOffsets() //默认 kafkaSour…
戳更多文章: 1-Flink入门 2-本地环境搭建&构建第一个Flink应用 3-DataSet API 4-DataSteam API 5-集群部署 6-分布式缓存 7-重启策略 8-Flink中的窗口 9-Flink中的Time Flink时间戳和水印 Broadcast广播变量 FlinkTable&SQL Flink实战项目实时热销排行 Flink写入RedisSink 17-Flink消费Kafka写入Mysql 简介 Flink-kafka-connector用来做什么? Ka…
1.概述 Apache官方发布HBase2已经有一段时间了,HBase2中包含了许多个Features,从官方JIRA来看,大约有4500+个ISSUES(查看地址),从版本上来看是一个非常大的版本了.本篇博客将为大家介绍HBase2的新特性,以及如何在实战中与Flink.Kafka等组件进行整合. 2.内容 HBase2有哪些新特性值得我们去关注,这里给大家列举部分特定. 2.1 部分新特性预览 2.1.1 Region分配优化 在HBase中遇到比较频繁的问题就是RIT问题,而在新特性中,对…
经常遇到这样的场景,13点-14点的时候flink程序发生了故障,或者集群崩溃,导致实时程序挂掉1小时,程序恢复的时候想把程序倒回13点或者更前,重新消费kafka中的数据. 下面的代码就是根据指定时间戳(也可以换算成时间)开始消费数据,支持到这样就灵活了,可以在启动命令中加个参数,然后再配个守护程序来控制程序. flink代码 import java.util.Properties import org.apache.flink.streaming.api.scala._ import org…
戳更多文章: 1-Flink入门 2-本地环境搭建&构建第一个Flink应用 3-DataSet API 4-DataSteam API 5-集群部署 6-分布式缓存 7-重启策略 8-Flink中的窗口 9-Flink中的Time Flink时间戳和水印 Broadcast广播变量 FlinkTable&SQL Flink实战项目实时热销排行 Flink写入RedisSink 17-Flink消费Kafka写入Mysql 本文介绍消费Kafka的消息实时写入Mysql. maven新增依…
Flink 读写Kafka 在Flink中,我们分别用Source Connectors代表连接数据源的连接器,用Sink Connector代表连接数据输出的连接器.下面我们介绍一下Flink中用于读写kafka的source & sink connector. Apache Kafka Source Connectors Apache Kafka 是一个分布式的流平台,其核心是一个分布式的发布-订阅消息系统,被广泛用于消费与分发事件流. Kafka将事件流组织成为topics.一个topic…
使用场景 Spark Streaming实时消费kafka数据的时候,程序停止或者Kafka节点挂掉会导致数据丢失,Spark Streaming也没有设置CheckPoint(据说比较鸡肋,虽然可以保存Direct方式的offset,但是可能会导致频繁写HDFS占用IO),所以每次出现问题的时候,重启程序,而程序的消费方式是Direct,所以在程序down掉的这段时间Kafka上的数据是消费不到的,虽然可以设置offset为smallest,但是会导致重复消费,重新overwrite hive…