结合CUDA范例精解以及CUDA并行编程.由于正在学习CUDA,CUDA用的比较多,因此翻译一些个人认为重点的章节和句子,作为学习,程序将通过NVIDIA K40服务器得出结果.如果想通过本书进行CUDA编程,又不太懂CUDA和GPU的架构,可以将这个博客作为入门博客(但是希望你能有些基础,因为我介绍的并不是特别全面,只是捡了一些我困惑很久后来明白的知识点,如果完全不懂GPU的话,建议通读本书和介绍GPU的架构的书),我尽量在一个月更新完这本书的中文内容(部分)并补充一些自己的认识.欢迎大家评论…
掌握部分硬件知识,有助于程序员编写更好的CUDA程序,提升CUDA程序性能,本文目的是理清sp,sm,thread,block,grid,warp之间的关系.由于作者能力有限,难免有疏漏,恳请读者批评指正.  首先我们要明确:SP(streaming Process),SM(streaming multiprocessor)是硬件(GPU hardware)概念.而thread,block,grid,warp是软件上的(CUDA)概念. 从硬件看 SP:最基本的处理单元,streaming pr…
[网络编程之客户端/服务器架构,互联网通信协议,TCP协议] 引子 网络编程 客户端/服务器架构 互联网通信协议 互联网的本质就是一系列的网络协议 OSI七层协议 tcp/ip五层模型 客户端/服务器架构 1.硬件C/S架构(打印机) 2.软件C/S架构 互联网中处处是C/S架构 如百度网站是服务端,你的浏览器是客户端(B/S架构也是C/S架构的一种) 腾讯作为服务端为你提供视频,你得下个腾讯视频客户端才能看它的视频) C/S架构与套接字(socket)的关系: 学习套接字编程的目的式为了开发一…
目录: 1.什么是CUDA 2.为什么要用到CUDA 3.CUDA环境搭建 4.第一个CUDA程序 5. CUDA编程 5.1. 基本概念 5.2. 线程层次结构 5.3. 存储器层次结构 5.4. 运行时API 5.4.1. 初始化 5.4.2. 设备管理 5.4.3. 存储器管理 5.4.3.1. 共享存储器 5.4.3.2. 常量存储器 5.4.3.3. 线性存储器 5.4.3.4. CUDA数组 5.4.4. 流管理 5.4.5. 事件管理 5.4.6. 纹理参考管理 5.4.6.1.…
CUDA(Compute Unified Device Architecture)的中文全称为计算统一设备架构.做图像视觉领域的同学多多少少都会接触到CUDA,毕竟要做性能速度优化,CUDA是个很重要的工具,CUDA是做视觉的同学难以绕过的一个坑,必须踩一踩才踏实.CUDA编程真的是入门容易精通难,具有计算机体系结构和C语言编程知识储备的同学上手CUDA编程应该难度不会很大.本文章将通过以下五个方面帮助大家比较全面地了解CUDA编程最重要的知识点,做到快速入门: GPU架构特点 CUDA线程模型…
1 GPU简介 图形处理单元GPU英文全称Graphic Processing Unit,GPU是相对于CPU的一个概念,NVIDIA公司在1999年发布GeForce256图形处理芯片时首先提出GPU的概念.GPU使显卡减少了对CPU的依赖,并进行部分原本CPU的工作(主要是并行计算部分).GPU具有强大的浮点数编程和计算能力,在计算吞吐量和内存带宽上,现代的GPU远远超过CPU. 目前NVIDIA最新的CUDA图形计算架构主要是Fermi架构和Kepler架构. 2  Fermi架构概述 上…
https://www.cnblogs.com/skyfsm/p/9673960.html CUDA(Compute Unified Device Architecture)的中文全称为计算统一设备架构.做图像视觉领域的同学多多少少都会接触到CUDA,毕竟要做性能速度优化,CUDA是个很重要的工具,CUDA是做视觉的同学难以绕过的一个坑,必须踩一踩才踏实.CUDA编程真的是入门容易精通难,具有计算机体系结构和C语言编程知识储备的同学上手CUDA编程应该难度不会很大.本文章将通过以下五个方面帮助大…
转载:http://www.cnblogs.com/tianzhiliang/archive/2010/10/28/1863684.html Socket服务器主要用于提供高效.稳定的数据处理.消息转发等服务,它直接决定了前台应用程序的性能.我们先从整体上认识一下Socket服务器,Socket服务器从架构上一般分为:网络层.业务逻辑层.会话层.数据访问层,如图: (图1) (一) 网络层 网络层主要用于侦听socket连接.创建socket.接受消息.发送消息.关闭连接.作为socket通信服…
CUDA编程(六) 进一步并行 在之前我们使用Thread完毕了简单的并行加速,尽管我们的程序运行速度有了50甚至上百倍的提升,可是依据内存带宽来评估的话我们的程序还远远不够.在上一篇博客中给大家介绍了一个訪存方面非常重要的优化.我们通过使用连续的内存存取模式.取得了令人惬意的优化效果,终于内存带宽也达到了GB/s的级别. 之前也已经提到过了,CUDA不仅提供了Thread.还提供了Grid和Block以及Share Memory这些非常重要的机制,我的显卡的Thread极限是1024,可是通过…
1. 典型的CUDA编程包括五个步骤: 分配GPU内存 从CPU内存中拷贝数据到GPU内存中 调用CUDA内核函数来完成指定的任务 将数据从GPU内存中拷贝回CPU内存中 释放GPU内存 *2. 数据局部性:(是指数据重用,以降低对于内存访问的延迟) 时间局部性:指在较短的时间内实现对数据或资源的重用 空间局部性:指在相对较接近的存储空间内数据元素的重用 CPU中通过缓存来增强时间局部性和空间局部性的优化 (不是很懂)3.CUDA中有内存层次和线程层次的概念 内存层次结构 线程层次结构 CUDA…